ANTIMICROBIAL CHEMOTHERAPY

DR. MEDHAT A. ELDAKER

Lecturer of Microbiology & Immunology
Faculty of Medicine – Mansoura University
Antibacterial Agents

Desired properties of antibiotics:

1. Selective toxicity.
2. Bactericidal > bacteriostatic.
3. Do not develop antibacterial resistance.
4. Broad spectrum.
5. Non-allergic.
8. Good tissue distribution (BBB-PBP).
Antimicrobial Agents

- **Def:**

- **In-vivo (Selective toxicity):**
 - Antibacterial (Antibiotics)
 - Antifungal
 - Antiviral

- **In-vitro:**
 - Antiseptics
 - Disinfectant
Antibacterial Agents

Mechanism of action:

- **Cell wall synthesis.**
 - Cycloserine
 - Vancomycin, Teichoplanin
 - Bacitracin
 - Penicillins
 - Cephalosporins
 - Monobactams
 - Carbapenems

- **Cell membrane function.**

- **Protein synthesis.**
 - Erythromycin (Macrolides)
 - Chloramphenicol
 - Clindamycin

- **DNA replication.**
 - Tetracycline
 - Spectinomycin
 - Streptomycin
 - Gentamicin, Tobramycin (aminoglycosides)
 - Amikacin

- **Other.**
Cell Wall Inhibitors

I. β Lactam antibiotics

II. Glycopeptides

III. Polypeptides
Cell Wall Inhibitors

I. β Lactam antibiotics

1. Penicillin
2. Monobactam
3. Carbapenem
4. Cephalosporins
Cell Wall Inhibitors

I. β Lactam antibiotics - Penicillin

A) Classic penicillin: → Gram positive (Except S. aureus).
 - Penicillin G & V.
 - Procaine Penicillin.
 - Benzile penicillin.

B) Penicillinase resistant penicillin: → S. aureus.
 - Oxacillin.
 - Cloxacillin.
 - Flucloxacillin.
 - Amoxycillin/Clavulanic acid - Ampicillin/Sulbactam.

C) Broad spectrum penicillins: → Gram-negative (Except Pseudomonas).
 - Ampicillin.
 - Amoxycillin.
 - Carbenicillin.
 - Ticarcillin.

D) Ureidopenicillins: → Pseudomonas.
 - Piperacillin.
 - Mezlocillin.
 - Azlocillin.
Cell Wall Inhibitors

I. β-Lactam antibiotics - Monobactam

Aztreonam (Azactam)
- Resistant Gram-negative bacteria.
- Pseudomonas.

I. β-Lactam antibiotics - Carbapenem

Imipenem (Tinam)
- Resistant Gram-negative & Gram-positive bacteria.
- Pseudomonas.
Cell Wall Inhibitors

I. β Lactam antibiotics - Cephalosporin

<table>
<thead>
<tr>
<th>1<sup>st</sup> G</th>
<th>2<sup>nd</sup> G</th>
<th>3<sup>rd</sup> G</th>
<th>4<sup>th</sup> G</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ve > -ve</td>
<td>+ve = -ve</td>
<td>-ve > +ve</td>
<td>+ve = -ve</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pseudomonas X</th>
<th>Pseudomonas ✓</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cephaloridin</th>
<th>Cefoxitin</th>
<th>Cefotaxime</th>
<th>Cefipime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalothin</td>
<td>Cefamandole</td>
<td>Ceftriazone</td>
<td></td>
</tr>
<tr>
<td>Cephalexin</td>
<td>Cefuroxime</td>
<td>Ceftazidime</td>
<td></td>
</tr>
<tr>
<td>Cephdroxil</td>
<td>Cefaclor</td>
<td>Cefoperazone</td>
<td></td>
</tr>
<tr>
<td>Cefazolin</td>
<td>Cefonicid</td>
<td>Cefizoxime</td>
<td></td>
</tr>
<tr>
<td>Cephradin</td>
<td>Ceforamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cefotetan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cell Wall Inhibitors

II. Glycopeptides

Vancomycin
- Resistant Gram-positive bacteria.
- MRSA.

III. Polypeptides

A. Cycloserine
Cycloserine
- TB

B. Bacitracin
Bacitracin
- Diagnostic
- Topical
Cell Wall Inhibitors

Penicillins and cephalosporins

Bacitracin, Vancomycin and cycloserine
Protein Synthesis Inhibitors

<table>
<thead>
<tr>
<th>30 S</th>
<th>50 S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycoside</td>
<td>Macrolide</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>B-cidal</td>
<td>B-cidal</td>
</tr>
<tr>
<td>B.static</td>
<td>Both</td>
</tr>
<tr>
<td>Gm –ve & Pseu</td>
<td>Gm +ve> -ve</td>
</tr>
<tr>
<td>Spir-Rick-Chla</td>
<td>Enteric fever</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>Oxytetracycline</td>
</tr>
<tr>
<td>Amikacin</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>Clindamycin</td>
</tr>
<tr>
<td>Neomycin</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Kanamycin</td>
<td></td>
</tr>
<tr>
<td>Streptomycin</td>
<td></td>
</tr>
</tbody>
</table>

- Chloramphenicol
- Macrolide
- Aminoglycoside
- Tetracycline
- B-cidal
- B.static
DNA Replication Inhibitors

I. Sulphonamides

- Bactiristatic
- UTI-Chemoprophylaxis - e.g. Trimethoprim.

II. Quinolones

- Bactricidal
- Broad spectrum
- Ofloxacin
- Gatifloxacin
- Ciprofloxacin
- Gatifloxacin
- Levofloxacin
- Nitrofurantoin (UTI)

III. Rifampicin

- Bactricidal
- TB

Inhibition of precursor

Inhibition of DNA polymerase

Inhibition of RNA polymerase
Cytoplasmic membrane Inhibitors

Polyenes

Bactiristatic

- *Polymyxin B* → topical
- *Amphotercin B* → antifungal
- *Mitronidazole* → anaerobes
Antibiotic Combination

- **Def:**

- **Synergism:**
 - 1 + 1 = > 2
 - Cidal + Cidal

- **Antagonism:**
 - 1 + 1 = 0
 - Cidal + Static

- **Addition:**
 - 1 + 1 = 2
 - Static + Static

1- Sequential block of a metabolic pathway
2- One drug may enhance the uptake of the other.
3- One drug may facilitate the entry of the second drug.
4- Suicidal ring.
Antibiotic Combination

- **Indications:**
 - Serious microbial infections.
 - Resistant pathogens.
 - Mixed infection.

- **Disadvantages:**
 - Side effects.
 - Antagonism (drug reaction).
 - Economic impacts.
Antimicrobial chemoprophylaxis

I) prophylaxis in persons of normal susceptibility exposed to specific pathogen.
- Prophylaxis from Rheumatic fever by long acting Penicillin.
- Prophylaxis from meningitis by Rifampicin.

II) Prophylaxis in persons of increased susceptibility:
- Heart diseases.
- Respiratory diseases (Chronic).
- Recurrent urinary tract infections.
- Immunosuppressed host.

III) Surgical prophylaxis
Bacterial Resistance to Antimicrobial Drugs

Mechanism:

- Decreased permeability.
- Inactivation.
- Alteration of target site.
- Alteration of metabolic pathway.
- Alteration of metabolic enzymes.
Bacterial Resistance to Antimicrobial Drugs

Origin of Drug Resistance

Genetic
 Chromosomal
 Extra-chromosomal
 Plasmids
 Transposonos

Non-genetic
Chromosomal Resistance
(Drug Resistant Mutants)

Mechanism:
- Spontaneous mutation \rightarrow Altered target.
- Rare.
- Need the presence of antibiotic \rightarrow selective pressure factor.
- Low frequency of transmission.

Example:
- P12 of 30 S ribosomal subunit \rightarrow R (Streptomycin)
Plasmid Resistance
(R Factor)

Mechanism:

- Presence of R factor
- Enzymatic:
 - β-lactamases
 - Acetyl transferase
- No need for selective pressure factor.
- High frequency of transmission by

- Plasmid carry genes of resistance.
- If transmissible → epidimic resistance
Transposons Resistance
(jumping genes)

Mechanism:

- Presence of transposons ???
- Enzymatic:
 - B lactamases
- No need for selective pressure factor.
- High frequency of transmission by ???
Transposons & Plasmids
(Extra chromosomal resistance)
= Resistance exchange
Non-Genetic Resistance
(Biochemical Resistance)

- **Mechanism:**
 - Decreased permeability.
 - Alteration of target site.
 - Metabolic pathway.
 - Metabolic enzymes.

- **Characters:**
 - Non transmissible.
Antibacterial Agents

Choice of antibiotics:

1. Selective toxicity.
2. Bactericidal > bacteriostatic.
3. Do not develop antibacterial resistance.
4. Broad spectrum.
5. Non-allergic.
8. Good tissue distribution (BBB-PBP).
Good Luck

DR. MEDHAT A. ELDAKER

Lecturer of Microbiology & Immunology
Faculty of Medicine – Mansoura University