GENERAL MICROBIOLOGY
Microbiology

The science that deals with organisms causing infectious diseases
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Prokaryotes</th>
<th>Eukaryotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Membrane</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Chromosome Number</td>
<td>Diploid</td>
<td>Haploid</td>
</tr>
<tr>
<td>Histone</td>
<td>70 S</td>
<td>80 S</td>
</tr>
<tr>
<td>Ribosome</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Peptidoglycan</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Mitosis</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Membrane bound organelles</td>
<td>Premature nucleus</td>
<td>True nucleus</td>
</tr>
</tbody>
</table>

Prokaryotes: Premature nucleus
Eukaryotes: True nucleus
General Bacteriology

- This includes:
 - Morphology of bacteria
 - Ultra structure of bacterial cell
 - Growth characters of bacteria
 - Nutrition of bacteria
 - Bacterial products
 - Metabolism of bacteria
 - Antimicrobial agents
Size, Shape & Arrangement

Size
- Measured by micron.
- Smallest bacteria is “Serratia” = 0.2 micron

Shape
- Cocci (Spherical) e.g. Staphylococci
- Bacilli (Cylindrical) e.g. Diphtheria
- Spiral
 - One curve e.g. Vibrio
 - More than one curve e.g. Spirilla and Spirochetes

Arrangement
- Single, Pairs, Tetrads, Bunches, Chains, Angular
Figure 2–1. Bacterial morphology. A: Cocci: in clusters, eg, Staphylococcus (A-1); chains, eg, Streptococcus (A-2); in pairs with pointed ends, eg, Streptococcus pneumoniae (A-3); in pairs with kidney bean shape, eg, Neisseria (A-4). B: Rods (bacilli): with square ends, eg, Bacillus (B-1); with rounded ends, eg, Salmonella (B-2); club-shaped, eg, Corynebacterium (B-3); fusiform, eg, Fusobacterium (B-4); comma-shaped, eg, Vibrio (B-5). C: Spirochetes: relaxed coil, eg, Borrelia (C-1); tightly coiled, eg, Treponema (C-2). (Modified and reproduced, with permission, from Joklik WK et al: Zinsser Microbiology, 20th ed. Originally published by Appleton & Lange. Copyright © 1992 by The McGraw-Hill Companies.)
Bacterial Structure (E/M)

- **Surface structure:**
 - Capsule
 - Cell wall
 - Cell membrane

- **Internal structure:**
 - Nuclear body
 - Ribosomes
 - Inclusion bodies
 - Flagella
 - Fimbriae
 - Mesosomes
Bacterial cell structure

- Capsule
- Cell Wall
- Plasma Membrane
- "Mesosome"
- Flagellum
- Pili
- Cytoplasm
- Cytoplasmic Inclusion
- Nucleoid & DNA
- Ribosome
- Endospore
Cell Wall

- It is a rigid layer covering the bacterial cell, and resting over the cell membrane

Chemical Structure

Peptidoglycan:
Backbone of alternating N-acetyl glucosamine (G) and N-acetyl muramic acid (M)

Tetrapeptide side chain:
A chain of 4 amino acids (??)

Peptide cross bridge:
5 amino acids
Gram positive cell wall

- Teichoic Acid
- Thick Layer of Highly Crosslinked Peptidoglycan
- Plasma Membrane
Gram negative cell wall

- Outer Membrane
 - Lipopolysaccharide Layer
 - Phospholipid Layer
 - Thin Peptidoglycan Layer
 - Periplasmic Space
- Plasma Membrane (Inner Membrane)
- Porin
Chemical Structure
G+ve & G-ve cell wall differences:

<table>
<thead>
<tr>
<th></th>
<th>Gram positive bacteria</th>
<th>Gram negative bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptidoglycan</td>
<td>Several layers up to 20 layers</td>
<td>One or two layers</td>
</tr>
<tr>
<td>Thick</td>
<td></td>
<td>Very thin</td>
</tr>
<tr>
<td>90% of cell wall material</td>
<td></td>
<td>5-20% only</td>
</tr>
</tbody>
</table>
| **Special structure** | Techoic acid Polysaccharides | - Lipoprotein
- Outermembrane
- Periplasmic membrane
- Lipopolysaccharide (endotoxin) |
Functions:

- Preservation of shape of cell
- Protection against high osmotic pressure
- Antigenic
 - Techoic acid in G+ve bacteria
 - Lipopolysaccharides in G-ve bacteria
- Toxicity of bacterial cell
 - Lipid A in LPS of G-ve bacteria is endotoxin
- Permeability of cell
 - Outer membrane of G-ve bacteria is barrier for large molecules
- Staining reaction
- Target action for antibiotics as penicillins and cephalosporins
Cytoplasmic membrane

- It is a thin elastic membrane inner to cell wall.
- It is very thin and porous
- It consists of lipoprotein (70% protein, 30% phospholipids) and small amount of CHO.
- Functions:
 - Chemo tactic function
 - Excretion of hydrolytic enzymes and toxins
 - Cell wall synthesis
 - Transport and permeability
Mesosomes

- They are inward invagination of cytoplasmic membrane inside cytoplasm.

- Functions:
 - Increase surface area
 - Site of attachment of chromosome in cell division
 - Excretion of extra cellular enzymes as *penicillinase*
Capsule

- It is a well defined layer surrounding cell.

- It is made of firm gelatinous material, consisting of large amount of water and small amount of solids.

- Chemical structure:
 - Most species: Polysaccharide
 - Anthrax: Polypeptide
Capsule by india ink stain
Capsule continue

- **Demonstration:**
 - Light microscope (L/M): unstained halo
 - Negative stain by India ink
 - Electron microscope (E/M)
 - Serological demonstration by Ag/Ab reaction

- **Function:**
 - Protection against attack by antibacterial agents.
 - Protection against phagocytosis
 - Determination of virulence
 - Antigenic: K antigen
Flagella

- They are long hollow helical filaments, attached to cytoplasm
- Organ of motility
- Very tall
- Diameter about 12-20 nm
- Demonstration:
 - Hanging drop method
 - L/M using mordant
 - E/M
Flagella

- **Structure:**
 - Flagellin protein

- **Types:**
 - Monotrichous
 - Amphitrichous
 - Lophotrichous
 - Peritrichous
Flagella

Functions:

- **Organ of Motility**
 - Increase rate of uptake of nutrients
 - Colonization site
 - Aerobic bacteria migrate towards higher conc. of oxygen
 - Penetration of pathogenic bacteria through viscid mucous
- **Antigenic (H antigen)**
Fimbrae (Pilli) \((\text{Pilli} = \text{hairs})\)

- They are filamentous appendages that differ from flagellae.

Difference than flagellae:
- Occur in motile & non-motile strains.
- More numerous (50-100 / cell).
- Much shorter & thinner.
- Straight \((\text{flagellae are spiral})\).
- Bacteria with fimbrae undergo reversible variations.
Fimbriae (Pilli)

- **Demonstration:**
 - Only by E/M

- **Functions:**
 - Organ of Adhesion
 - Hemagglutination of some G-ve bacilli
 - Sex fimbriae in conjugation and bacteriophage
 - Virulence (colonization Ag) (Surface virulent factor)
Nuclear bodies

- No nuclear membrane
- Made of DNA
- There is single chromosome
- Seen by E/M
Inclusion granules

- They are round granules observed in cytoplasm in many bacteria.
- Not permanent nor essential.
- Represent some metabolic products or store CHO, lipid or protein.

Example:
- Volutin granules, commonly seen in diphtheria, (also called metachromatic granules)
Ribosomes

- House of protein synthesis
- Made of RNA and protein
- 2 subunits:
 - 50 S
 - 30 S
- Whole ribosome = 70 S
- Site of translation of mRNA into polypeptide chain.
Bacterial Spores

- Resistant form of bacteria under certain unfavorable conditions (starvation, heat, chemicals)
- Occurs outside the body
- Process:
 - Nuclear material moves to one spot
 - Then surrounded by thick spore membrane
- Shape:
 - Oval or rounded
 - Bulging or non-bulging
Bacterial Spores

- **Structure:**
 - Bacterial DNA
 - Small amount of cytoplasm
 - Peptidoglycan
 - Very little amount of water
 - Thick keratin coat, responsible for resistance of spore

- Resistance may be due to dipicolinic acid (*Ca^{++} ion chelator*)
Figure 2–8. Bacterial spores. The spore contains the entire DNA genome of the bacterium surrounded by a thick, resistant coat. (Modified and reproduced, with permission, from Tortora G, Funk B, Case C: Microbiology: An Introduction, 5th ed. Benjamin/Cummings, 1995.)
Germination

- On exposure of spore to water and appropriate nutrients, specific enzymes degrade coat
- Water and nutrients enter
- Germination occurs into metabolizing and reproducing cell
Germination is **NOT** a means of reproduction; since one cell produces one spore which germinates into one cell.

Examples of spore-forming bacteria:
- Closteridium *(anaerobic)*
- Bacillus *(aerobic)*
Growth Requirements of bacteria

- Nutrition
- Gases
- Moisture
- Temperature
- pH
- Others
Bacterial Nutrition

- Bacteria can be classified into:
 - Autotrophic
 - They can assimilate inorganic sources of carbon (CO$_2$) as only source of carbon skeleton
 - As saprophytic bacteria
 - Heterotrophic
 - They require organic sources of carbon and are unable to use CO$_2$ only as source of carbon
 - As pathogenic bacteria
Bacterial Nutrition

• **Types of nutrients:**
 • **Basic elements**
 • **Major elements:**
 – Carbon
 – Nitrogen
 – Water
 • **Minor elements:**
 – Phosphorus
 – Sulphur
 – Magnesium
 – Potassium
 – Calcium
 • **Essential metabolites and growth factors:**
 • Nucleotides and vitamins
Gases: Oxygen

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Oxygen need</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligatory aerobes</td>
<td>Grow only in presence of O_2</td>
<td>Mycobacterium T.B.</td>
</tr>
<tr>
<td>Facultatative anaerobes</td>
<td>Grow in presence or absence of O_2</td>
<td>Pathogenic bacteria (most of them)</td>
</tr>
<tr>
<td>Obligatory anaerobes</td>
<td>Can’t grow in presence of O_2</td>
<td>Clostridium group</td>
</tr>
<tr>
<td>Microaerophilic</td>
<td>Grows best in presence of little amount of O_2</td>
<td>Corynebacterium acne</td>
</tr>
</tbody>
</table>
Gases: Carbon dioxide

- Normal atmospheric CO$_2$ (0.03%) is sufficient for most bacteria.
- Some bacteria need higher conc. (5-10%) for:
 - Stimulation of growth
 - Streptococcus pneumoniae
 - Neisseria
 - Brucella abortus
 - Capsule formation
 - Yersinia pestis (Pasteurella pestis)
 - Anthrax
 - Enterotoxin formation
 - Staphylococcus aureus
Moisture

• Large amount of bacteria is made of water, so high amount of water is needed in any media used for bacterial culture

• Example:
 • Mycobacterium T.B. needs high conc. of moisture
Temperature

- 37°C is optimum temperature for most pathogenic bacteria
- Growth between 10°C – 42°C is called temperature range
- Growth below minimum temperature is called psychrophilic
- Growth above minimum temperature is called thermophilic
pH (Hydrogen ion concentration)

- Most pathogenic bacteria grow in optimum pH 7.4
- Some bacteria tolerate alkaline media, called alkalophilic e.g. vibrio cholera
- Some bacteria tolerate acidic media, called acidophilic e.g. lactobacillus
Other factors

• As:
 • Light
 • Mechanical factors (Supersonic)
 • Osmotic pressure
Bacterial products

- Bacterial enzymes
- Bacterial pigments
- Bacterial toxins
- Others
Bacterial enzymes

- Protein in nature, produced only by living cells
- Act under special pH and temperature
- Actions:
 - May act as proteolytic, saccharolytic or lipolytic enzymes
 - Respiratory enzymes as dehydrogenase and oxidase
<table>
<thead>
<tr>
<th>Endopigment</th>
<th>Exopigment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remains bound to organism and does not diffuse into surrounding medium</td>
<td>Diffuses into surrounding medium</td>
</tr>
<tr>
<td>Red pigment == Serratia</td>
<td>Pseudomonas produces:</td>
</tr>
<tr>
<td>Violet pigment == Chromobacterium</td>
<td>Blue pigment (Pyocyanin)</td>
</tr>
<tr>
<td>Golden yellow ==</td>
<td>Yellow pigment (Flourescens)</td>
</tr>
</tbody>
</table>
Bacterial Toxins

<table>
<thead>
<tr>
<th>Character</th>
<th>Exotoxin</th>
<th>Endotoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusibility</td>
<td>Diffusible</td>
<td>Non-diffusible</td>
</tr>
<tr>
<td>Heating at 60-80</td>
<td>Destroyed</td>
<td>Stable</td>
</tr>
<tr>
<td>Antigenicity</td>
<td>Strong</td>
<td>Weak</td>
</tr>
<tr>
<td>Toxicity</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Specificity</td>
<td>Specific</td>
<td>Non-specific</td>
</tr>
<tr>
<td>Nature</td>
<td>Protein</td>
<td>LPS</td>
</tr>
<tr>
<td>Source</td>
<td>Some G+ve and G-ve</td>
<td>Most G-ve</td>
</tr>
<tr>
<td>Effect of formaline</td>
<td>Change to toxoid</td>
<td>Not affected</td>
</tr>
<tr>
<td>Location of genes</td>
<td>Plasmid or bacteriophage</td>
<td>Chromosome</td>
</tr>
</tbody>
</table>
Other products

- Coagulase
- Leucocidin
- Haemolysin
- Hyaluronidase
Bacterial reproduction & Growth Curve

• Common method of reproduction is simple binary fission

• Growth curve shows 4 phases:
 • Lag phase
 • Log phase
 • Stationary phase
 • Decline phase
Rate of Death > Rate of division

Growth curve

- **Lag phase**
- **Log phase**
- **Stationary phase**
- **Decline phase**

When organism is introduced into suitable medium, it does not multiply immediately, but increases in size and changes metabolism to prepare for reproduction.
Bacterial Metabolism

• Metabolism means all chemical processes within a cell:
 • Anabolism
 • Catabolism

• ATP is formed by:
 • Oxidation, where energy is stored as high energy phosphate bond
 • Oxidative phosphorylation (respiratory chain)
 • NAD == 3 ATP
 • FAD == 2 ATP
Bacterial Metabolism

- **Carbon & Energy sources of Bacteria:**

<table>
<thead>
<tr>
<th>Group</th>
<th>Energy source</th>
<th>Carbon source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoautotrophs</td>
<td>Light</td>
<td>CO$_2$</td>
</tr>
<tr>
<td>Photoheterotrophs</td>
<td>Light</td>
<td>Organic</td>
</tr>
<tr>
<td>Chemoautotrophs</td>
<td>Oxidation of inorganic substance</td>
<td>CO$_2$</td>
</tr>
<tr>
<td>Chemoheterotrophs</td>
<td>Oxidation of organic substances</td>
<td>Organic</td>
</tr>
</tbody>
</table>
Chemoheterotrophic bacteria

- Bacteria which are unable to use CO$_2$ as only source of carbon, and must obtain energy from organic substrates by fermentation.
- Other type of metabolism is respiration.
Fermentation

- During fermentation, immediate products formed by catabolism of organic substrate serve as final electron acceptor.
- Result is acid and gas, so detected by:
 - Acid base detector (acid detection)
 - Inverted Durham tube (gas detection)
- Gas-Liquid chromatography is used for rapid identification of some obligate anaerobes.
Respiration (Aerobic oxidation)

- Glucose \rightarrow 2 Pyruvic acid (Glycolysis)
- Pyruvic acid \rightarrow 3 CO$_2$, NADH, FADH (Kreb’s cycle)
- Respiratory chain:
 - All NAD and FAD \rightarrow ATP
- Results:
 - Glycolysis = 2 ATP + 6 ATP (from 3 NADH)
Anti-microbial agents
Antimicrobial agents

- Include:
 - Antibiotics
 - Antiviral drugs
 - Antifungal drugs
 - Antiprotozoal agents
Antibiotics

- Mechanism of action may be:
 - Inhibition of cell wall synthesis
 - Alteration of cell membrane permeability
 - Inhibition of protein synthesis
 - Inhibition of nucleic acid synthesis
 - Others
Cell wall inhibitors

- **B- Lactams**
- **Glycopeptides**
 - Vancomycin
- **Polypeptides**
 - Cycloserine
 - Bacitracin
B-Lactams

- **Penicillins**
 - Classic e.g. penicillin G
 - Penicillinase resistant penicillin e.g. cloxacillin
 - Broad spectrum e.g. ampicillin
 - Ureidopenicillin e.g. piperacillin

- **Cephalosporins**
 - 1st generation e.g. cephaloridine (velosef)
 - 2nd generation e.g. cefaclor
 - 3rd generation e.g. cefotaxime
Mechanism of action:

- **Penicillins:**
 - Inhibit terminal cross link of peptidoglycan
 - Bind to cell receptor penicillin binding protein, which are transpeptidase
 - Removal of inhibitors of autolytic enzymes

- **Cephalosporins:**
 - Inhibit terminal cross link of peptidoglycan
Antimicrobials acting through inhibition of cell membrane

- **Polymyxins:**
 - Peptides which incorporate itself inside protein and phospholipids causing free passage of substances outside and inside cell

- **Nystatinin and Amphotericin B:**
 - Combine with sterols in cell membrane causing rupture and leakage of cytoplasm contents
Antimicrobials acting against protein synthesis:

- Aminoglycosides (Neomycin, Kanamycin, Streptomycin ... etc)
- Tetracyclins
- Macrolides
- Chloramphenicol

Mechanism of action:

- Inhibition of 30 S (Aminoglycosides and tetracyclins) and 50 S (Macrolides and chloramphenicol)
- Aminoglycosides act on specific receptors on P12 on 30S
Resistance to drugs:

- **Penicillins:**
 - Organism produce B-lactamase
 - Absence of penicillin receptors
 - Failure of drug to activate autolytic enzymes

- **Aminoglycosides:**
 - Organism produce adenylating, phosphorylating, acetylating enzymes
 - Absence of specific receptors for drug
Inhibitors of nucleic acid synthesis

Inhibitors of precursor synthesis
- Sulfonamides
- Trimethoprim

Inhibitors of DNA synthesis
- Quinolones
- Flucytosine

Inhibitors of RNA synthesis
- Rifampicin
Inhibitors of nucleic acid synthesis

Mechanism of action:
- Sulfonamide:
 - Competitive inhibition of PABA
- Trimethoprim:
 - Inhibition of oxidation of nicotinic acid to tetrahydrofolic acid
- Rifampicin:
 - Inhibit RNA synthesis
Other mechanisms of action:

- **Isoniazide**
 - Mycolic acid synthesis inhibitor
- **Metronidazole**
 - DNA strand break
- **Ethambutol**
 - Inhibition of arabino-glactan
- **Griseofulvin**
 - Mitotic spindle formation inhibitor
Causes of failure of antimicrobial chemotherapy

- Viral or mixed infection may be not susceptible to antimicrobial agents
- Failure to use laboratory
- Errors of laboratory
- Wrong choice of antibiotics
- Wrong route of administration
- Inadequate dose of drug
- Inadequate duration of treatment by drug
- Antimicrobial resistance
- Antagonistic antibiotic
Drug resistance

- Means unresponsiveness of organism to drug
- Mechanism:
 - Organism produces enzyme that destroy drug (B-lactamase)
 - Organism changes permeability to drug
 - Organism alters structural target for drug (P12)
 - Organism alters metabolic pathway (PABA)
Drug resistance

• **Origin of resistance:**
 - **Non-genetic**
 - As inactive TB and L-form
 - **Genetic**
 - **Chromosomal**
 - Spontaneous mutation in gene responsible for resistance
 - **Extrachromosomal (Plasmid)**
 - Genes control often formation of enzymes capable of destroying drugs
Combination of antimicrobial drugs

- **Advantages:**
 - Treat serious infection
 - Delay or prevent resistance
 - Treat mixed infection
 - Synergism

- **Disadvantage:**
 - Drug interactions
 - High cost
 - Superinfection
 - Antagonism

- **Mechanism:**
 - Sequential block of metabolic pathway by 2 drugs
 - One drug enhances uptake of another drug
 - One drug facilitates entry of another drug
 - One drug inhibits enzyme which destroys the other drug
Antimicrobial chemoprophylaxis

- **Prophylaxis in person of normal susceptibility:**
 - Rheumatic fever, by long acting penicillin
 - Meningitis, by rifampicin
 - Plague, by tetracycllin
- **Prophylaxis in person of increased susceptibility:**
 - Heart disease
 - Leukemia
 - Recurrent UTI
 - Chronic respiratory diseases
- **Prophylaxis in surgery:**
 - Lower limb amputation
 - Wound sepsis
 - Orthopedic surgery
Factors to select drug of choice

- In vitro sensitivity test
- Narrow / Broad spectrum
- Determination of drug resistance
- Determination of side effects and toxicity
- Pharmacodynamics of drug
- Drug must be effective in vivo and in vitro
- Drug combination
- Drug interactions
- Patient factors:
 - Pregnancy
 - Age
Good Luck!

Dr Sahar Taher