A comparative study on SPCTR-2, SPCTR-1881 and SMARTS2 models using direct normal solar irradiance in different bands for Cairo and Aswan, Egypt

Author(s): Tadros, MTY (Tadros, MTY); El-Metwally, M (El-Metwally, M); Hamed, AB (Hamed, AB)

Abstract:
The estimated values of Direct Normal Solar Irradiance (DNSI) in different bands, using the three spectral models SPCTR-2, SPCTR-1881 (modified SPCTR-2) and SMARTS2, are compared to corresponding values measured in a polluted (urban/industrial) area of Cairo and an unpolluted area in Aswan. The measured data of DNSI are used as input to all models, while some of these data have been selected (56 measurements for Aswan and 94 for Cairo) to cover different atmospheric conditions in the period 1991-1996. The statistical indicators, t-statistic and absolute percentage error epsilon%, show that SPCTR-2 model is not suitable for estimation of DNSI in the visible band b(2) (530-630 nm), but it is more suitable in the infrared band b(4) (695-2900 nm). SPCTR-1881 model is not suitable for estimation of DNSI in b(4), but it is efficient for b(2). SMARTS2 model is the most suitable for most bands with the lowest percentage deviation, so that the epsilon% range for Cairo is 0.93-5.2% with t-values in the range 0.002-0.006 with angstrom ngstrom turbidity parameters alpha = 0.4 and beta = 0.21-0.28. For Aswan the epsilon% range is 0.74-4.29% with t-values in the range 0.019-0.181 (alpha = 0.8 and = 0.12-0.14). (c) 2005 Elsevier Ltd. All rights reserved.

Accession Number: WOS:000232522700010

Document Type: Article

Language: English

Author Keywords: SPCTR-2; SPCTR-1881; SMARTS2 models; direct normal solar irradiance; spectral bands; Egypt

KeyWords Plus: ATMOSPHERIC TURBIDITY; SPECTRAL MODEL; EARTHS SURFACE; RADIATION; URBAN; AEROSOL; BASIN

Reprint Address: Tadros, MTY (reprint author), Univ Mansoura, Fac Sci, Dept Phys, Mansoura 35516, Egypt.

Addresses:
[1] Univ Mansoura, Fac Sci, Dept Phys, Mansoura 35516, Egypt
[2] Suez Canal Univ, Fac Educ, Dept Phys, Cairo, Egypt
E-mail Address: magdytadros@yahoo.com

Publisher: PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

References

Anderson et al., 1993

Berk et al., 1989

Bird, 1984
R.E. Bird
A simple solar spectral model for direct-normal and diffuse horizontal irradiance

Bird and Riordan, 1986
R.E. Bird, C. Riordan
Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres

El-Wakil et al., 2001
S.A. El-Wakil, M. El-Metwally, C. Gueymard
Atmospheric turbidity of urban and desert areas of the Nile Basin in the aftermath of Mt. Pinatubo's Eruption Theoretical and Applied Climatology, 68 (2001), pp. 89–108

Gueymard, 1994 C. Gueymard
Analysis of monthly average atmospheric precipitable water and turbidity in Canada and northern United States

Gueymard, 2001 C. Gueymard
Parameterized transmittance model for direct beam and circum-solar spectral irradiance

Guzzi et al., 1983
R. Guzzi, G. La Vaecchio, R. Rizzi, G. Scalabrin
Experimental validation of a spectral direct solar radiation model

Halthore et al., 1997
Comparison of model estimated and measured direct-normal solar irradiance

Iqbal, 1983 M. Iqbal
An Introduction to Solar Radiation

Kneizys et al., 1980

Leckner, 1978 B. Leckner
The spectral distribution of solar radiation at the earth's surface-elements of a model

Lorente et al., 1994
J. Lorente, A. Redano, X. De Cabo
Influence of urban aerosol on spectral solar irradiance

Ma and Iqbal., 1984
C.C.Y. Ma, M. Iqbal.
Statistical comparison of solar radiation correlations—monthly average global and diffuse radiation on horizontal surfaces

Majumdar et al., 1985
N.C. Majumdar, N.C. Walmik, B.K. Agarwal
A simple method for assessment of atmospheric turbidity
Mausam, 36 (1985), pp. 51–56

Neckel and Labs, 1981 H. Neckel, D. Labs
Improved data of solar spectral irradiance from 0.33 to 1.25 µm
Solar Physics, 74 (1981), pp. 231–249

Peterson et al., 1978
J.T. Peterson, E.C. Flowers, J.H. Rudisill
Urban–rural solar radiation and atmospheric turbidity measurements in the Los Angeles basin

Stone, 1993 R.J. Stone
Improved statistical procedure for the evaluation of the solar radiation estimation models

Tadros, 2000 M.T.Y. Tadros
Uses of sunshine to estimate the global solar radiation over eight meteorological stations in Egypt

Tadros et al., 2002
M.T.Y. Tadros, M. El-Metwally, A.B. Hamed
Determination of Ångström coefficients from spectral aerosol optical depth at two sites in Egypt

Utrillas et al., 1998
M.P. Utrillas, J.V. Bosca, J.A. Martinez-Lozano, J. Canada, F. Tena, J.M. Pinazo
A comparative study of SPECTRAL2 and SMARTS2 parameterised algorithms based on spectral irradiance measurements at Valencia

Vashistha et al., 1998
R.D. Vashistha, R. Madan, S.K. Srivastav
Spectral (direct) solar irradiance at Pune
Mausam, 49 (1998), pp. 487–492

WMO, 1990
Determination of Angstrom coefficients from spectral aerosol optical depth at two sites in Egypt

Author(s): Tadros, MTY (Tadros, MTY); El-Metwally, M (El-Metwally, M); Hamed, AB (Hamed, AB)

Source: RENEWABLE ENERGY Volume: 27 Issue: 4 Pages: 621-645 Article Number: PII S0960-1481(01)00156-2 DOI: 10.1016/S0960-1481(01)00156-2 Published: DEC 2002

Abstract: Angstrom Turbidity Coefficients (ATC) are estimated from Aerosol Optical Depth by using spectral broadband data. These data are carried out from Pyrhiometric measurements in the period 1991-96 for two sites of different climatological and environmental view; the first one is a highly polluted urbanized site (Cairo), while the other is an unpolluted and site (Aswan). SMARTS2 model proposed by Gueymard and SPCTRAL2 model proposed by Bird and Riordan, with two pairs of spectral broadbands, are used to select the suitable spectral broadband for estimating ATC. The turbidity levels increase during the two transition seasons, spring (due to Khamasin depressions coming from Great Sahara) and autumn (due to extend of Sudan monsoon trough), in addition to summer season. The subsidence inversion is stronger and leads to trap the pollution in the boundary layer in summer. The mean average values of ATC, over the all period, are alpha=0.477, 0.817 and beta=0.283, 0.144 for Cairo and Aswan respectively. Turbidity level in Cairo is higher than that in Aswan because the two big industrial areas Helwan and Shoubra El-Kheima surround Cairo, in addition to traffic. (C) 2002 Elsevier Science Ltd. All rights reserved.

Accession Number: WOS:000176392300009

Document Type: Article

Language: English

KeyWords Plus: ATMOSPHERIC TURBIDITY PARAMETERS; MOUNT-PINATUBO; PRECIPITABLE WATER; SOLAR IRRADIANCE; ERUPTION; BASIN; DUST; AFTERMATH; SATELLITE; PARTICLES

Reprint Address: Tadros, MTY (reprint author), Univ Mansoura, Fac Sci, Dept Phys, Mansoura 35516, Egypt.

Addresses:
[1] Univ Mansoura, Fac Sci, Dept Phys, Mansoura 35516, Egypt
[2] Suez Canal Univ, Fac Educ, Dept Phys, Ismailia, Egypt

Publisher: PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD
References

The parametrisation of the atmospheric aerosol optical depth using the Ångström power law

Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992

[3] H.A. Bridgman
Direct visible spectra and aerosol optical depths at urban and aural locations during the summer
of 1975 at Miwaukee

Atmospheric turbidity in a semi-rural site—I
M. Katz, A. Baille, M. Mermier
Atmospheric turbidity in a semi-rural site—II

Chemistry of the natural atmosphere
,in: R. Dmowska, J.R. Holton (Eds.), The international geophysics series, vol. 41Academic
Press, Orlando, FL (1988)

Determination of Ångström's turbidity coefficient from direct total solar irradiance
measurements

Comparison between atmospheric turbidity coefficients of desert and temperate climates

An analysis of direct solar transmittance and atmospheric turbidity in the Mediterranean climatic
beltSolar Wind Technol, 6 (1989), pp. 111–124
Determination of Ångström turbidity coefficient at Valencia

Atmospheric turbidity parameters in highly polluted site of Athens basin

A new method to determine Ångström's turbidity coefficient: its application for Valencia

Critical evaluation of precipitable water and atmospheric turbidity in Canada using measured hourly solar irradiance

Experimental data of the Linke turbidity factor and estimates of the Ångström turbidity coefficient for two Italian localities

Values of broad band turbidity coefficients in a Mediterranean coastal site
Solar Energy, 66 (1999), pp. 11–20

Atmospheric turbidity of urban and desertic areas of the Nile Basin in the aftermath of Mt. Pinatubo's eruption

[18] H.S. Sahsamanoglou, A.A. Bloutsos
Solar radiation reduction by water and dust in the area of Thessaloniki

Simple solar spectral algorithm for direct and diffuse irradiance on horizontal and tilted planes at earth's surface for cloudless atmospheres

[22] M.A.M. Shaltout, M.T.Y. Tadros, M. El-Metwally
Studying the extinction coefficient due to aerosol particles at different spectral bands in some regions at great Cairo

[23] P. Vaxelair, J. Leveau, G. Menguy, S. Baldy
Ground-level spectral distribution of solar direc-normal irradiance and marine aerosol attenuation coefficients Reunion Island

Equivalence of pyrhiometric and monochromatic aerosol optical depths at a single key wavelength

[25] C. Gueymard
Analysis of monthly average atmospheric precipitable water and turbidity in Canada and northern United States

[26] M. Iqbal

[29] V. Hansen

A comparative study of SPECTRAL2 and SMARTS2 parametrised algorithms based on spectral
irradiance measurements at Valencia

[32] C.P. Jacovides, M.D. Steven, D. Asimakopoulos
N Spectral solar irradiance and some optical properties for various polluted atmosphere

[33] J.J. Michalsky, G.M. Stokes
Mt. St. Helen's aerosols: some tropospheric and stratospheric effects

[34] V.E. Cachorro, M.J. Gonzalez, A.M. Frutos, J.L. Casanova
Fitting Ångström formula to spectrally resolved aerosol optical depth

[35] F.M. El-Hussainy, M.A. Omran
Analysis and trends of atmospheric turbidity parameters over Cairo

Y.J. Balkanski, W. Guelle, B. Marticorena, G. Bergametti, F. Dulac
Satellite climatology of African dust transport in the Mediterranean atmosphere

[37] J.H. Joseph, A. Manes
Secular and seasonal variation of atmospheric turbidity at Jerusalem

[38] J.D. Karalis
The turbidity parameters in Athena

stimation of the linke and Unsworth–Monteith turbidity factors in the visible spectrum

[40] M.H. Unsworth, J.L. Monteith
Aerosol and solar radiation in Britain
Quart J. R. Met. Soc., 98 (1972), pp. 778–797
[41] J.L. Melice, A. Boughanmi, F. Eaton, G. Wendler

Characterization of the vertical structure of Saharan dust export to the Mediterranean basin

Aerosol optical properties in the Iranian region obtained by ground-based solar radiation measurements in the summer of 1991

[45] R.M. Hitzenberger
On the wavelength dependence of the extinction coefficient of the atmospheric aerosol at different locations and under various meteorological conditions

Effect of pollutant aerosols on spectral atmospheric transmissivity in Cairo

[47] M.T.Y. Tadros, M. Madkour, M. El-Metwally
Size distribution of aerosol particles: comparison between agricultural and industrial areas in Egypt

[48] C. Tomasi, E. Caroli, V. Vitale
Study of the relationship between Ångström's wavelength exponent and Junge particle size distribution exponent

[49] F.E. Volz
Infrared refractive index atmospheric aerosol substances

Determination of Ångström turbidity parameters over the north and central India

[52] P. Posse, W. Von Hoyningen-Huene
Sun- and sky radiometer observations of Pinatubo aerosol at Mt. Zugspitze (47.5°N Germany)

[53] J.J. Michalsky, R. Perez, P. Ineichen
Degradation of solar concentrator performance in the aftermath of Mount Pinatubo

Variation in atmospheric turbidity in the area around Japan
J. Glob. Envir. Eng., 3 (1997), pp. 9–21

Major volcanic eruptions and climate: a critical evaluation

Atmospheric effects of the Mt. Pinatubo eruption

[57] T. Yamauchi
Statistical analysis of atmospheric turbidity over Japan: the influence of three volcanic eruptions

[58] M.P. McCormick
Initial assessment of the stratospheric and climatic impact of the 1992 Mount Pinatubo eruption: prologue

Use of volcanic aerosols to study the tropical stratospheric reservoir

Global evolution of the Mt. Pinatubo volcanic aerosols observed by the limb-sounding instruments CLAES and ISAMS on the Upper Atmosphere Research Satellite

Radiative forcing from the 1991 Mount Pinatubo volcanic eruption
Indirect determination of broadband turbidity coefficients over Egypt
2013, Meteorology and Atmospheric Physics
Solar attenuation by aerosols: An overview
2012, Renewable and Sustainable Energy Reviews
Aerosol properties and associated radiative effects over Cairo (Egypt)
2011, Atmospheric Research
Tadros, MTY OCT 2000

Uses of sunshine duration to estimate the global solar radiation over eight meteorological stations in Egypt

Author(s): Tadros, MTY (Tadros, MTY)

Source: RENEWABLE ENERGY Volume: 21 Issue: 2 Pages: 231-246 DOI: 10.1016/S0960-1481(00)00009-4 Published: OCT 2000

Abstract:

The climatological Angstrom regression coefficients have been determined by three methods and used to predict the global solar radiation over eight meteorological stations. Each of the three methods depends on the correlation between two ratios. The first ratio is between the long period of monthly average sunshine duration (s) over bar and the corresponding maximum of daily sunshine duration (day length) N, and the second ratio is between the measured monthly average daily global solar radiation (H) over bar and the corresponding monthly mean daily extraterrestrial solar radiation on the horizontal surface (H) over bar(0). A comparison between the measured data and the estimated values has been done. The t-statistics is used as a statistical indicator to choose the coefficients of the best method that gives a percentage of error less than 10%. (C) 2000 Elsevier Science Ltd. All rights reserved.

Accession Number: WOS:000087356600008

Document Type: Article

Language: English

Reprint Address: Tadros, MTY (reprint author), Univ Mansoura, Fac Sci, Dept Phys, POB 35516, Mansoura, Egypt.

Addresses:

[1] Univ Mansoura, Fac Sci, Dept Phys, Mansoura, Egypt

Publisher: PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
References

[1] M.T.Y. Tadros
Nonlinear equation for estimating the global solar radiation for any latitude in Egypt
International Conference on Applications of Solar and Renewable Energy (ASRE 92), 4 (1992), pp. 49–58

Estimation of global solar radiation in Uttar Pradesh (India) and comparison of some existing correlations

Solar and terrestrial radiation

Evaporation from a water surface in relation to solar radiation
Trans. R. Soc. S. Austr., 64 (1940), p. 114

Predicted and measured global solar radiation in Egypt

Solar radiation over Egypt: comparison of predicted and measured meteorological data

Global solar radiation in Italy

Voeikov Main Geophysical Observatory, St Petersburg, Russian Federation (Leningrad, USSR)
1972–1988

Fourier series representation of the position of the Sun
Improved statistical procedure for the evaluation of solar radiation models
Studying the extinction coefficient due to aerosol particles at different spectral bands in some regions at great Cairo

Author(s): Shaltout, MAM (Shaltout, MAM); Tadros, MTY (Tadros, MTY); El-Metwally, M (El-Metwally, M)

Source: RENEWABLE ENERGY Volume: 19 Issue: 4 Pages: 597-615 Published: APR 2000

Abstract:
Extinction coefficient due to aerosol has been estimated by Pyrheliometric and Gorgie type Actinometric measurements in the industrial, urban areas and compared with agricultural areas. The measurements distributed over one year from June 1992 to May 1993 were made under clear sky for five spectral bands. The results show two maxima in hot wet and spring months and minimum in winter months, but there is a fluctuation in urban area. Diurnal variations show maximum at noon especially in the industrial area. Level of extinction coefficient in the industrial and urban area is greater than that of the agricultural area, except for hot wet months is due to the increase of water vapor content in agricultural area. Spectral distribution of the extinction coefficient decreases monotonically with wavelength. Size of particles in industrial area is greater than in urban and agricultural areas. The temperature and water vapor content have important rules in increasing the extinction coefficient of aerosols. (C) 1999 Elsevier Science Ltd. All rights reserved.

Accession Number: WOS:000083671200009

Document Type: Article

Language: English

KeyWords Plus: IRRADIANCE

Reprint Address: Shaltout, MAM (reprint author), Natl Res Inst Astron & Geophys, Cairo, Egypt.

Addresses:
[1] Natl Res Inst Astron & Geophys, Cairo, Egypt
[3] Egyptian Meteorol Author, Cairo, Egypt

Publisher: PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Web of Science Categories: Energy & Fuels

Research Areas: Energy & Fuels
References:

1. Title: [not available]
 Author(s): ABDELRAHMAN MA
 Source: J SOL ENERGY Volume: 40 Pages: 219 Published: 1988

2. Title: TRANSMISSION OF CUTOFF GLASS FILTERS EMPLOYED IN SOLAR RADIATION RESEARCH
 Author(s): ANGSTROM, AK; DRUMMOND, AJ

3. Title: SIMPLE SOLAR SPECTRAL MODEL FOR DIRECT AND DIFFUSE IRRADIANCE ON HORIZONTAL AND TILTED PLANES AT THE EARTH'S SURFACE FOR CLOUDLESS ATMOSPHERES
 Author(s): BIRD, RE; RIORDAN, C

4. Title: [not available]
 Author(s): BRUNBERGER H
 Source: LIGHT SCATTERING SCI Pages: 38 Published: 1986

5. Title: [not available]
 Author(s): DOGNIAUX R
 Source: P UNESCO WMO S Volume: 477 Pages: 191 Published: 1977

6. Title: Atmospheric extinction related to aerosol mass concentration and meteorological conditions in the atmosphere of Qena, Egypt
 Author(s): El-Shazly, SM; Abdelmageed, AM; Hassan, GY; et al.
 Source: Mausam Volume: 42 Pages: 367-374 Published: 1991

7. Title: [not available]
 Author(s): FROHLICH C
 Source: SPECTRAL DISTRIBUTIO Published: 1981

8. Title: [not available]
 Author(s): HANSEN V
 Source: ARCH MET GEOPH BIOKL Volume: 22 Pages: 301 DOI: 10.1007/BF02243475 Published: 1974
9. Title: [not available]
Author(s): HIGAZY NA
Source: THESIS CAIRO U Published: 1976

10. Title: [not available]
Author(s): Iqbal, M.
Source: An Introduction to Solar Radiation Published: 1983
Publisher: Academic Press

11. Title: LINKE AND UNSWORTH-MONTEITH TURBIDITY PARAMETERS IN ATHENS
Author(s): KAMBEZIDIS, HD; FOUNDA, DH; PAPANIKOLAOU, NS
Source: QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
Abstract Number: A1993-13-8670G-006 Published: JAN 1993

12. Title: RELATION BETWEEN OBSERVED AEROSOL OPTICAL THICKNESSES AND CALCULATED VALUES FROM SIZE DISTRIBUTION MEASUREMENTS
Author(s): KOBAYASHI, T; YANO, N
Source: JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN Volume: 60 Issue: 6 Pages: 1249-1258
Published: 1982

13. Title: [not available]
Author(s): Lenoble, J.
Source: Atmospheric Radiative Transfer Published: 1993
Publisher: A. Deepak, Hampton, Virginia, USA

14. Title: PROPERTIES OF SHARAV (KHAMSIN) DUST - COMPARISON OF OPTICAL AND DIRECT SAMPLING DATA
Author(s): LEVIN, Z; JOSEPH, JH; MEKLER, Y

15. Title: The effect of atmospheric aerosols on climate with special reference to temperature near the earth's surface
Author(s): Mitchell, J.M. , Jr.
Published: Aug. 1971

16. Title: Atmospheric water vapour and its effect on aerosol extinction at a coastal station-Visakhapatnam
Author(s): Niranjan, K.; Babu, Y.R.
Published: July 1993
17. Title: EFFECTS OF POLLUTANT AEROSOLS ON SPECTRAL ATMOSPHERIC TRANSMISSIVITY IN CAIRO EGYPT
Author(s): RIZK H F S; FARAG S A; ATEIA A A; et al.
Source: Environment International Volume: 11 Issue: 6 Pages: 487-492 DOI: 10.1016/0160-4120(85)90182-5 Published: 1985

18. Title: Aerosol optical thickness in Cairo atmosphere
Author(s): Rizk, HFS; Soliman, SH; El, Beialy AB; et al.
Source: J Inst Eng Volume: 66 Pages: 45-51 Published: 1986

19. Title: Fourier series representation of the position of the Sun
Author(s): Spencer, JW.
Source: Search Volume: 2 Issue: 5 Pages: 172 Published: 1971

20. Title: [not available]
Author(s): VAXELAIR P
Source: THESIS U PARIS 7 PAR Published: 1989

21. Title: GROUND-LEVEL SPECTRAL DISTRIBUTION OF SOLAR DIRECT-NORMAL IRRADIANCE AND MARINE AEROSOL ATTENUATION COEFFICIENTS AT REUNION ISLAND
Author(s): VAXELAIRE, P; LEVEAU, J; MENGUY, G; et al.

22. Title: [not available]
Author(s): VOLTZ FE
Source: J ATMOS SCI Volume: 27 Pages: 1041 Published: 1970

23. Title: INCREASE OF GLOBAL ALBEDO DUE TO AIR-POLLUTION
Author(s): YAMAMOTO, G; TANAKA, M
Power spectra analysis for world-wide and North Africa historical earthquakes data in relation to sunspots periodicities

Author(s): Shaltout, MAM (Shaltout, MAM); Tadros, MTY (Tadros, MTY); Mesiha, SL (Mesiha, SL)

Source: RENEWABLE ENERGY Volume: 17 Issue: 4 Pages: 499-507 DOI: 10.1016/S0960-1481(98)00775-7 Published: AUG 1999

Times Cited: 2 (from Web of Science)

Abstract:
In the last three decades, the influence of solar activity on earth seismicity is one of the most important subjects in the field of long-term prediction of earthquakes.

In the present work, the autocorrelation and power spectra analysis were applied for the sequences of sunspots and earthquakes activity. The used data are the worldwide earthquakes of M greater than or equal to 5, and the sunspots number R-z, for the period 1903-1985. Both are available from the National Oceanic and Atmospheric Administration NOAA, Boulder, Colorado, U.S.A. Also, we restrict our attention to earthquakes in North Africa with two stations, one at Cairo (Egypt), and the other at Alger (Algeria) of M greater than or equal to 4 for the period (1900-1986).

The results indicated the presence of the eleven year cycles of the sunspots into the time of the earthquakes of the North Africa. Also, from the worldwide and North Africa earthquakes data a periodicities ranged between 1.01 and 5.5 years are revealed, which may be linked to a solar activity cycle. (C) 1999 Elsevier Science Ltd. All rights reserved.

Accession Number: WOS:000080212900003

Document Type: Article

Language: English

Reprint Address: Shaltout, MAM (reprint author), Natl Res Inst Astron & Geophys, Helwan, Egypt.

Addresses:

Publisher: PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Web of Science Categories: Energy & Fuels

Research Areas: Energy & Fuels

IDS Number: 194UT

ISSN: 0960-1481
References

1. Title: [not available]
 Author(s): ABDURAKHMANOV AI
 Source: INT UN GEOD GEOPH 15 Pages: 3 Published: 1971

2. Title: [not available]
 Author(s): ALLAM A
 Source: B INT I SEISMOLOGY E Volume: 13 Pages: 45 Published: 1975

3. Title: [not available]
 Author(s): ALLAM A
 Source: B INT I SEISMOLOGY E Volume: 13 Pages: 53 Published: 1975

4. Title: [not available]
 Author(s): ANGHEL MA
 Source: GEOPHYS GEOGR G Volume: 23 Pages: 51 Published: 1979

5. Title: [not available]
 Author(s): BADAWY YK
 Source: B FACULTY SCI Volume: 11 Published: 1984

6. Title: [not available]
 Author(s): BLACKMAN, R. B.; TUKEY, J. W.
 Source: The Measurement of Power Spectra: From the Point of View of Communications Engineering Published: 1959
 Publisher: Dover Publications, Mineola, NY

7. Title: [not available]
 Author(s): BURFELD YG
 Source: NAUCHNYYE SOOBSHCHEN Pages: 2200 Published: 1974

8. Title: CHINESE RECORDS ON CORRELATION OF HELIOCENTRIC PLANETARY ALIGNMENTS AND EARTHQUAKE ACTIVITIES
 Author(s): IP, WH
 Source: ICARUS Volume: 29 Issue: 3 Pages: 435-436 DOI: 10.1016/0019-1035(76)90144-5
 Abstract Number: A1977-005136 Published: 1976

9. Title: Aftershocks and periodicity in earthquakes
 Author(s): Jeffreys, H.
 Source: Gerlands Beitrage zur Geophysik Volume: 53 Issue: 1-3 Pages: 111-139 Abstract Number: A1938-02377 Published: 1938

10. Title: [not available]
 Author(s): KALININ YD
 Source: GEOMAGN AERON Volume: 15 Pages: 140 Published: 1975

11. Title: [not available]
 Author(s): KNOPFF L
23. Title: [not available]
Author(s): SHALTOUT MA
Source: HELWAN OBSERVATORY B Volume: 243 Published: 1980

24. Title: [not available]
Author(s): SHALTOUT MAM
Source: MAUSAM Volume: 41 Pages: 393 Published: 1990

25. Title: [not available]
Author(s): SHALTOUT MAM
Source: MAUSAM Volume: 41 Pages: 565 Published: 1990

26. Title: [not available]
Author(s): SIMPSON JF
Source: EARTH PLANET SC LETT Volume: 3 Pages: 417 Published: 1967

27. Title: [not available]
Author(s): SMITH G
Source: EARTH SCI Volume: 28 Pages: 253 Published: 1975

28. Title: [not available]
Author(s): SOBAKAR GT
Source: GEOFIZ SB Volume: 82 Pages: 3 Published: 1978

29. Title: [not available]
Author(s): SOBAKAR GT
Source: MEZHDUVED GEOFIZ KOM Pages: 41 Published: 1978

30. Title: [not available]
Author(s): STOYKO A
Source: ACAD ROY BELG Volume: 55 Pages: 279 Published: 1969

31. Title: [not available]
Author(s): Svestka, Z.
Source: Solar Flares Published: 1976
Publisher: D. Reidel Publ. Co., Holland, Dordrecht

32. Title: [not available]
Author(s): SYTINSKIY AD
Source: ACAD SCI USSR DOKL E Volume: 208 Pages: 36 Published: 1974

33. Title: INFLUENCE OF SOLAR-ACTIVITY ON EARTH SEISMICITY
Author(s): SYTINSKI AD
Source: DOKLADY AKADEMIIN NAUK SSSR Volume: 208 Issue: 5 Pages: 1078-1081 Published: 1973
34. Title: [not available]
Author(s): SYTINSKIY AD
Source: EARTH SCI SECTIONS Volume: 249 Pages: 12 Published: 1979

35. Title: [not available]
Author(s): SYTINSKIY AD
Source: MECH EFFECT SOLAR AC Pages: 140

36. Title: [not available]
Author(s): SYTINSKIY AD
Source: RELATION EARTHS SEIS Pages: 100 Published: 1987

37. Title: [not available]
Author(s): SYTINSKIY AD
Source: S FORERUNNERS STRONG Volume: 8 Pages: 24 Published: 1971

38. Title: [not available]
Author(s): SYTINSKIY AD
Source: VSESOYUZNNAYA NAUCHN Pages: 49 Published: 1977

39. Title: EFFECT OF HANNING AND PARZEN WINDOWS AND KALMAN FILTER ON THE SPECTRAL-ANALYSIS OF SOLAR-CONSTANT AND SOLAR ACTIVITIES
Author(s): TADROS, MTY; SHALTOUT, MAM

40. Title: [not available]
Author(s): TRIPOLNIKOV VP
Source: GEOMAGN AERON Volume: 17 Pages: 767 Published: 1977

41. Title: THE GREAT WUQIA EARTHQUAKE (MS=7.4-1985) AND SUNSPOT CYCLE
Author(s): XU, DY; GAO, JG