
LINKED \mathcal{PT}-SYMMETRY TO SUPERSYMMETRY IN A CLASS OF NON-HERMITIAN HAMILTONIANS

ABOUZEID M. SHALABY

Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
Physics Department, Faculty of Science, Mansoura University, Egypt

Received: 16 January 2012
Revised: 24 February 2012
Accepted: 27 February 2012
Published: 3 April 2012

Abstract:

We introduce and study a class of non-Hermitian Hamiltonians which have velocity dependent potentials. Since stability cannot be advocated directly from the classical potential, we show that the energy spectra are real and bounded from below which proves the stability of the spectra of all members in the class. We find that the introduced class of non-Hermitian Hamiltonians do have a corresponding superpartner class of non-Hermitian Hamiltonians. We were able to introduce supercharges which in conjunction with the corresponding super Hamiltonians constitute a closed super algebra. Among the introduced Hamiltonians, we show that non-\mathcal{PT}-symmetric Hamiltonians can be transformed into their corresponding superpartner Hamiltonians via a specific canonical transformation while the \mathcal{PT}-symmetric ones failed to be mapped to their corresponding superpartner Hamiltonians via the same canonical transformation. Since canonical transformations preserve the spectrum, we conclude that non-\mathcal{PT}-symmetric Hamiltonians out of the introduced class of Hamiltonians have the same spectrum as the corresponding superpartner Hamiltonians and thus supersymmetry (Susy) is broken for such Hamiltonians. This kind of intertwining of \mathcal{PT}-symmetry and Susy is new as all the so far discussed cases concentrate on Hamiltonians of broken \mathcal{PT}-symmetry that have broken Susy too while we showed that Susy can be also broken for non-\mathcal{PT}-symmetric and non-Hermitian Hamiltonians.

Keywords: Supersymmetry-pseudo-Hermitian Hamiltonians, \mathcal{PT}-symmetric theories

References:

REPRESENTATION DEPENDENCE OF SUPERFICIAL DEGREE OF DIVERGENCES IN QUANTUM FIELD THEORY

ABOUZEID M. SHALABY

Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar

Physics Department, Faculty of Science, Mansoura University, Egypt

Received: 22 March 2011

Abstract:

In this work, we investigate a very important but unstressed result in the work of C. M. Bender, J.-H. Chen, and K. A. Milton, *J. Phys. A* 39, 1657 (2006). These authors have calculated the vacuum energy of the $i\phi^3$ scalar field theory and its Hermitian equivalent theory up to g^4 order of calculations. While all the Feynman diagrams of the $i\phi^3$ theory are finite in 0+1 space–time dimensions, some of the corresponding Feynman diagrams in the equivalent Hermitian theory are divergent. In this work, we show that the divergences in the Hermitian theory originate from superrenormalizable, renormalizable and nonrenormalizable terms in the interaction Hamiltonian even though the calculations are carried out in the 0+1 space–time dimensions. Relying on this interesting result, we raise a question: Is the superficial degree of divergence of a theory is representation dependent? To answer this question, we introduce and study a class of non-Hermitian quantum field theories characterized by a field derivative interaction Hamiltonian. We showed that the class is physically acceptable by finding the corresponding class of metric operators in a closed form. We realized that the obtained equivalent Hermitian and the introduced non-Hermitian representations have coupling constants of different mass dimensions which may be considered as a clue for the possibility of considering nonrenormalizability of a field theory as a nongenuine problem. Besides, the metric operator is supposed to disappear from path integral calculations which means that physical amplitudes can be fully obtained in the simpler non-Hermitian representation.

Keywords: Pseudo-Hermitian Hamiltonians; metric operators; non-Hermitian models; nonrenormalizable theories; PT-symmetric theories.

References:

• M. E. Peskin and D. V. Schroeder, *An Introduction to Quantum Field Theory* (Addison-Wesley, 1995).
Nonperturbative tests for asymptotic freedom in the PT-symmetric (-phi(4))(3+1) theory

Author(s): Shalaby, A (Shalaby, Abouzeid)[1,2]; Al-Thoyaib, SS (Al-Thoyaib, Suleiman S.)[3,4]

Source: PHYSICAL REVIEW D Volume: 82 Issue: 8 Article Number: 085013 DOI: 10.1103/PhysRevD.82.085013 Published: OCT 12 2010

Abstract:
In the literature, the asymptotic freedom property of the (-phi(4)) theory is always concluded from realine calculations while the theory is known to be a non-real-line one. In this article, we test the existence of the asymptotic freedom in the (-phi(4))(3+1) theory using the mean field approach. In this approach and contrary to the original Hamiltonian, the obtained effective Hamiltonian is rather a real-line one. Accordingly, this work resembles the first reasonable analysis for the existence of the asymptotic freedom property in the PT-symmetric (-phi(4)) theory. In this respect, we calculated three different amplitudes of different positive dimensions (in mass units) and find that all of them go to very small values at high energy scales (small coupling) in agreement with the spirit of the asymptotic freedom property of the theory. To test the validity of our calculations, we obtained the asymptotic behavior of the vacuum condensate in terms of the coupling, analytically, and found that the controlling factor Lambda has the value $(4 \pi)(2)/6 = 26.319$ compared to the result $\Lambda = 26.3209$ from the literature, which was obtained via numerical predictions. We assert that the nonblowup of the massive quantities at high energy scales predicted in this work strongly suggests the possibility of the solution of the famous hierarchy puzzle in a standard model with the PT-symmetric Higgs mechanism.

Accession Number: WOS:000282813100016

Document Type: Article

Language: English

KeyWords Plus: QUANTUM-FIELD-THEORY; ELECTROWEAK PARAMETERS; TECHNICOLOR THEORIES; MODEL; BREAKING; MECHANICS

Reprint Address: Shalaby, A (reprint author), Qatar Univ, Dept Math & Phys, Coll Arts & Sci, Doha, Qatar.

Addresses:
[1] Qatar Univ, Dept Math & Phys, Coll Arts & Sci, Doha, Qatar

E-mail Address: amshalab@mans.edu.eg

References:
1. Title: [not available]
Author(s): Bender, C. M; Milton, K. A; Savage, V. M.
Source: Phys. Rev D Volume: 62 Article Number: 085001 DOI:
10.1103/PhysRevD.62.085001 Published: 2000
2. Title: Nonperturbative calculation of symmetry breaking in quantum field theory
Author(s): Bender, CM; Milton, KA
Source: PHYSICAL REVIEW D Volume: 55 Issue: 6 Pages: R3255-R3259 Published: MAR 15 1997
3. Title: PT-symmetric versus Hermitian formulations of quantum mechanics
Author(s): Bender, CM; Chen, JH; Milton, KA
4. Title: Semiclassical analysis of a complex quartic Hamiltonian
Author(s): Bender, CM; Brody, DC; Jones, HF
Source: PHYSICAL REVIEW D Volume: 73 Issue: 2 Article Number: 025002 DOI:
10.1103/PhysRevD.73.025002 Published: JAN 2006
5. Title: Calculation of the one-point Green's function for a-g phi(4) quantum field theory
Author(s): Bender, CM; Meisinger, PN; Yang, HT
Source: PHYSICAL REVIEW D Volume: 63 Issue: 4 Article Number: 045001 DOI:
10.1103/PhysRevD.63.045001 Published: FEB 15 2001
6. Title: Real spectra in non-Hermitian Hamiltonians having PT symmetry
Author(s): Bender, CM; Boettcher, S
Source: PHYSICAL REVIEW LETTERS Volume: 80 Issue: 24 Pages: 5243-5246 DOI:
7. Title: QUANTUM FLUCTUATIONS IN A PHI-4 FIELD-THEORY .1. STABILITY OF VACUUM
Author(s): CHANG, SJ
Source: PHYSICAL REVIEW D Volume: 12 Issue: 4 Pages: 1071-1088 DOI:
10.1103/PhysRevD.12.1071 Published: 1975
8. Title: Quartic anharmonic oscillator and non-Hermiticity
Author(s): Chen, JL; Kwek, LC; Oh, CH
Source: PHYSICAL REVIEW A Volume: 67 Issue: 1 Article Number: 012101 DOI:
10.1103/PhysRevA.67.012101 Published: JAN 2003
9. Title: QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL
Author(s): COLEMAN, S
Source: PHYSICAL REVIEW D Volume: 11 Issue: 8 Pages: 2088-2097 DOI:
10. Title: [not available]
Author(s): Collins, J. C.
Source: *Renormalization* Published: 1984
Publisher: Cambridge University Press, Cambridge, England

11. Title: SOME REMARKS ON NORMAL ORDERING OF LAGRANGIANS
Author(s): DIN, AM
Source: *PHYSICAL REVIEW D* Volume: 4 Issue: 4 Pages: 995-
DOI: 10.1103/PhysRevD.4.995 Abstract Number: A1972-000344 Published: 1971

12. Title: [not available]
Author(s): DINEYKHAN M
Source: *LECT NOTES PHYS M* Volume: 26 Pages: 1 Published: 1995

13. Title: The anatomy of electroweak symmetry breaking Tome I: The Higgs boson in the Standard Model
Author(s): Djouadi, Abdelhak

14. Title: RADIATIVE-CORRECTIONS TO ELECTROWEAK PARAMETERS IN TECHNICOLOR THEORIES
Author(s): GOLDEN, M; RANDALL, L
Source: *NUCLEAR PHYSICS B* Volume: 361 Issue: 1 Pages: 3-23 DOI: 10.1016/0550-3213(91)90614-4 Abstract Number: A1991-132163 Published: AUG 26 1991

15. Title: LARGE CORRECTIONS TO ELECTROWEAK PARAMETERS IN TECHNICOLOR THEORIES
Author(s): HOLDOM, B; TERNING, J

16. Title: [not available]
Author(s): JONES HF
Source: *ARXIV10022877*

17. Title: Which Green functions does the path integral for quasi-Hermitian Hamiltonians represent?
Author(s): Jones, H. F.; Rivers, R. J.
18. Title: [not available]
Author(s): Kaku, M.
Source: Quantum Field Theory, A Modern Introduction Published: 1993
Publisher: Oxford University Press, Oxford, UK

19. Title: Kurt Symanzik - a stable fixed point beyond triviality
Author(s): Kleefeld, F

20. Title: Gaussian effective potential and Coleman's normal-ordering prescription: the functional integral formalism
Author(s): Lu, WF; Kim, CK

21. Title: EXISTENCE OF A PHASE-TRANSITION IN (PHI4)3 QUANTUM FIELD-THEORY
Author(s): MAGRUDER, SF

22. Title: PT-symmetric cubic anharmonic oscillator as a physical model
Author(s): Mostafazadeh, A

23. Title: PT-symmetric cubic anharmonic oscillator as a physical model (vol 38, pg 6557, 2004)
Author(s): Mostafazadeh, A

24. Title: [not available]
Author(s): Peskin, M. E.; Schroeder, D. V. Source: An Introduction to Quantum Field Theory Published: 1995 Publisher: Addison-Wesley, Reading, MA

25. Title: NEW CONSTRAINT ON A STRONGLY INTERACTING HIGGS SECTOR
Author(s): PESKIN, ME; TAKEUCHI, T
26. Title: Effective theories of gauge-Higgs unification models in warped spacetime
Author(s): Sakamura, Yutaka
Source: PHYSICAL REVIEW D Volume: 76 Issue: 6 Article Number: 065002 DOI: 10.1103/PhysRevD.76.065002 Published: SEP 2007

27. Title: QUASI-HERMITIAN OPERATORS IN QUANTUM-MECHANICS AND THE VARIATIONAL PRINCIPLE
Author(s): SCHOLTZ, FG; GEYER, HB; HAHNE, FJW

28. Title: [not available]
Author(s): SHALABY A
Source: ARXIV07122521

29. Title: Non-perturbative calculations for the effective potential of the PT symmetric and non-Hermitian (-g phi) field theoretical model
Author(s): Shalaby, A. M.
Source: EUROPEAN PHYSICAL JOURNAL C Volume: 50 Issue: 4 Pages: 999-1006 DOI: 10.1140/epjc/s10052-007-0236-4 Published: MAY 2007

30. Title: Effective field calculations of the energy spectrum of the PT-symmetric (-x(4)) potential
Author(s): Shalaby, Abouzeid M.
Source: PHYSICAL REVIEW D Volume: 79 Issue: 6 Article Number: 065017 DOI: 10.1103/PhysRevD.79.065017 Published: MAR 2009

31. Title: Novel phase in the phase structure of the (g phi(4)+h phi(6))(1+1) field theoretic model
Author(s): Shalaby, Abouzeid M.
Source: PHYSICAL REVIEW D Volume: 76 Issue: 4 Article Number: 041702 DOI: 10.1103/PhysRevD.76.041702 Published: AUG 2007

32. Title: DYNAMICS OF SPONTANEOUS SYMMETRY-BREAKING IN THE WEINBERG-SALAM THEORY
Author(s): SUSSKIND, L

33. Title: RENORMALIZATION PROBLEM IN NONRENORMALIZABLE MASSLESS PHI-4 THEORY Author(s): SYMANZIK, K
34. Title: SUPERGAUGE TRANSFORMATIONS IN 4 DIMENSIONS
 Author(s): WESS, J; ZUMINO, B
 Source: NUCLEAR PHYSICS B Volume: B 70 Issue: 1 Pages: 39-50 DOI: 10.1016/0550-3213(74)90355-1 Abstract Number: A1974-035934 Published: 1974
New ansatz for metric operator calculation in pseudo-Hermitian field theory

Author(s): Shalaby, AM (Shalaby, Abouzeid M.)1,2

Source: PHYSICAL REVIEW D Volume: 79 Issue: 10 Article Number: 107702 DOI: 10.1103/PhysRevD.79.107702 Published: MAY 2009

Abstract:
In this work, a new ansatz is introduced to make the calculations of the metric operator in pseudo-Hermitian field theory simpler. The idea is to assume that the metric operator is not only a functional of the field operator ϕ and its conjugate field π but also on the field gradient $\text{del} \phi$. The ansatz enables one to calculate the metric operator just once for all dimensions of the space-time. We calculated the metric operator of the $i\phi(3)$ scalar field theory up to first order in the coupling. The higher orders can be conjectured from their corresponding operators in the quantum mechanical case available in the literature. We assert that the calculations existing in literature for the metric operator in field theory are cumbersome and are done case by case concerning the dimension of space-time in which the theory is investigated. In fact, with the aid of this work a rigorous study of a PT-symmetric Higgs mechanism can be reached.

Accession Number: WOS:000266501900122

Document Type: Article

Language: English

KeyWords Plus: SYMMETRIC QUANTUM-MECHANICS; COMPLEX HAMILTONIANS; CUBIC OSCILLATOR; PT-SYMMETRY; EIGENVALUES; POTENTIALS

Reprint Address: Shalaby, AM (reprint author), Mansoura Univ, Fac Sci, Dept Phys, Mansoura, Egypt.

Addresses:
[2] Qassim Univ, Fac Sci, Dept Phys, Qasim, Saudi Arabia

E-mail Address: amshalab@mans.edu.eg

Publisher: AMER PHYSICAL SOC, ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Web of Science Categories: Astronomy & Astrophysics; Physics, Particles & Fields

Research Areas: Astronomy & Astrophysics; Physics
References
1. Title: Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians
 Author(s): Bender, CM; Berry, M; Meisinger, PN; et al.

2. Title: Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction (vol 70, art no 025001, 2004)
 Author(s): Bender, CM; Brody, DC; Jones, HF
 Source: PHYSICAL REVIEW D Volume: 71 Issue: 4 Article Number: 049901 DOI: 10.1103/PhysRevD.71.049901 Published: FEB 2005

3. Title: Numerical evidence that the perturbation expansion for a non-Hermitian PT-symmetric Hamiltonian is Stieltjes
 Author(s): Bender, CM; Weniger, EJ

4. Title: Conjecture on the interlacing of zeros in complex Sturm-Liouville problems
 Author(s): Bender, CM; Boettcher, S; Savage, VM

5. Title: Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian
 Author(s): Bender, CM; Dunne, GV

6. Title: PT-symmetric quantum mechanics
 Author(s): Bender, CM; Boettcher, S; Meisinger, PN
 Source: JOURNAL OF MATHEMATICAL PHYSICS Volume: 40 Issue: 5 Pages: 2201-2229 DOI: 10.1063/1.532860 Abstract Number: A1999-12-0365-043 Published: MAY 1999

7. Title: PT-symmetric versus Hermitian formulations of quantum mechanics
 Author(s): Bender, CM; Chen, JH; Milton, KA
8. Title: A class of exactly-solvable eigenvalue problems
Author(s): Bender, CM; Wang, QH

9. Title: Conjecture on the analyticity of PT-symmetric potentials and the reality of their spectra
Author(s): Bender, Carl M.; Hook, Daniel W.; Mead, Lawrence R.

10. Title: Quantum complex Henon-Heiles potentials
Author(s): Bender, CM; Dunne, GV; Meisinger, PN; et al.
Source: PHYSICS LETTERS A Volume: 281 Issue: 5-6 Pages: 311-316 DOI: 10.1016/S0375-9601(01)00146-3 Abstract Number: A2001-12-0365-059 Published: APR 2 2001

11. Title: Variational ansatz for PJ-symmetric quantum mechanics
Author(s): Bender, CM; Cooper, F; Meisinger, PN; et al.

12. Title: Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction
Author(s): Bender, CM; Brody, DC; Jones, HF
Source: PHYSICAL REVIEW D Volume: 70 Issue: 2 Article Number: 025001 DOI: 10.1103/PhysRevD.70.025001 Published: JUL 2004

13. Title: Calculation of the one-point Green's function for a-g phi(4) quantum field theory
Author(s): Bender, CM; Meisinger, PN; Yang, HT
Source: PHYSICAL REVIEW D Volume: 63 Issue: 4 Article Number: 045001 DOI: 10.1103/PhysRevD.63.045001 Published: FEB 15 2001

14. Title: Real spectra in non-Hermitian Hamiltonians having PT symmetry
Author(s): Bender, CM; Boettcher, S
15. Title: Spectral analysis of the complex cubic oscillator
Author(s): Delabaere, E; Trinh, DT

16. Title: Eigenvalues of complex Hamiltonians with PT-symmetry. I
Author(s): Delabaere, E; Pham, F

17. Title: Eigenvalues of complex Hamiltonians with PT-symmetry. II
Author(s): Delabaere, E; Pham, F

18. Title: Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics
Author(s): Dorey, P; Dunning, C; Tateo, R

19. Title: Some properties of eigenvalues and eigenfunctions of the cubic oscillator with imaginary coupling constant
Author(s): Mezincescu, GA

20. Title: PT-symmetric cubic anharmonic oscillator as a physical model
Author(s): Mostafazadeh, A

21. Title: PT-symmetric cubic anharmonic oscillator as a physical model (vol 38, pg 6557, 2004)
Author(s): Mostafazadeh, A
22. Title: Effective field calculations of the energy spectrum of the PT-symmetric (-x(4)) potential
Author(s): Shalaby, Abouzeid M.
Source: PHYSICAL REVIEW D Volume: 79 Issue: 6 Article Number: 065017 DOI: 10.1103/PhysRevD.79.065017 Published: MAR 2009

23. Title: Eigenvalues of PT-symmetric oscillators with polynomial potentials
Author(s): Shin, KC
Possible treatment of the ghost states in the Lee-Wick standard model

Abstract:
In this work, we employ the techniques used to cure the indefinite norm problem in pseudo-Hermitian Hamiltonians to show that the ghost states in a higher derivative scalar field theory are not real ghosts. For the model under investigation, an imaginary auxiliary field is introduced to have an equivalent non-Hermitian two-field scalar theory. We were able to calculate exactly the positive definite metric operator \(\eta \) for the quantum mechanical as well as the quantum field versions of the theory. While the equivalent Hamiltonian is non-Hermitian in a Hilbert space characterized by the Dirac sense inner product, it is, however, a Hermitian in a Hilbert space endowed with the inner product \(\langle n | \eta | m \rangle \). The main feature of the latter Hilbert space is that the propagator has the correct sign (no Lee-Wick fields). Moreover, the calculated metric operator diagonalizes the Hamiltonian in the two fields (no mixing). We found that the Hermiticity of the calculated metric operator to lead to the constrain \(M > 2m \) for the two Higgs masses, in agreement with other calculations in the literature. Besides, our mass formulas coincide with those obtained in other works (obtained by a very different regime but with the existence of ghost states), which means that our positive normed Hamiltonian form preserves the mass spectra.
References

1. Title: No-ghost theorem for the fourth-order derivative pais-uhlenbeck oscillator model
 Author(s): Bender, Carl M.; Mannheim, Philip D.
 Source: PHYSICAL REVIEW LETTERS Volume: 100 Issue: 11 Article Number: 110402
 DOI: 10.1103/PhysRevLett.100.110402 Published: MAR 21 2008

2. Title: Ghost busting: PT-symmetric interpretation of the Lee model
 Author(s): Bender, CM; Brandt, SF; Chen, JH; et al.
 Source: PHYSICAL REVIEW D Volume: 71 Issue: 2 Article Number: 025014 DOI:

3. Title: Real spectra in non-Hermitian Hamiltonians having PT symmetry
 Author(s): Bender, CM; Boettcher, S
 Source: PHYSICAL REVIEW LETTERS Volume: 80 Issue: 24 Pages: 5243-5246 DOI:

4. Title: Minimal Lee-Wick extension of the Standard Model
 Author(s): Carone, Christopher D.; Lebed, Richard F.
 Source: PHYSICS LETTERS B Volume: 668 Issue: 3 Pages: 221-225 DOI:
 10.1016/j.physletb.2008.08.050 Published: OCT 9 2008

5. Title: The anatomy of electroweak symmetry breaking Tome I: The Higgs boson in the Standard Model
 Author(s): Djouadi, Abdelhak
 Source: PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS Volume: 457 Issue: 1-4 Pages: 1-216 DOI:
 10.1016/j.physrep.2007.10.004 Published: FEB 2008

6. Title: Neutrino masses in the Lee-Wick standard model
 Author(s): Espinosa, Jose Ramon; Grinstein, Benjamin; O'Connell, Donal; et al.
 Source: PHYSICAL REVIEW D Volume: 77 Issue: 8 Article Number: 085002 DOI:
 10.1103/PhysRevD.77.085002 Published: APR 2008

7. Title: The Lee-Wick standard model
 Author(s): Grinstein, Benjamin; O'Connell, Donal; Wise, Mark B.
 Source: PHYSICAL REVIEW D Volume: 77 Issue: 2 Article Number: 025012 DOI:
 10.1103/PhysRevD.77.025012 Published: JAN 2008

8. Title: Disappearing Q operator
 Author(s): Jones, H. F.; Rivers, R. J.
 Source: PHYSICAL REVIEW D Volume: 75 Issue: 2 Article Number: 025023 DOI:
 10.1103/PhysRevD.75.025023 Published: JAN 2007
9. Title: NEGATIVE METRIC AND UNITARITY OF S-MATRIX
Author(s): LEE, TD; WICK, GC

10. Title: FINITE THEORY OF QUANTUM ELECTRODYNAMICS
Author(s): LEE, TD; WICK, GC

11. Title: Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries
Author(s): Mostafazadeh, A

12. Title: Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
Author(s): Mostafazadeh, A

13. Title: Searching for Lee-Wick gauge bosons at the LHC
Author(s): Rizzo, Thomas G.

14. Title: New ansatz for metric operator calculation in pseudo-Hermitian field theory
Author(s): Shalaby, Abouzeid M.
Source: PHYSICAL REVIEW D Volume: 79 Issue: 10 Article Number: 107702 DOI: 10.1103/PhysRevD.79.107702 Published: MAY 2009

15. Title: SUPERGAUGE TRANSFORMATIONS IN 4 DIMENSIONS
Author(s): WESS, J; ZUMINO, B
Source: NUCLEAR PHYSICS B Volume: B 70 Issue: 1 Pages: 39-50 DOI: 10.1016/0550-3213(74)90355-1 Abstract Number: A1974-035934 Published: 1974