COLLECTION, TRANSPORT, AND EXAMINATION OF ASCITIC FLUID

Possible pathogens

Gram positive
- Enterococci
- *Streptococcus pneumoniae*
- *Staphylococcus aureus*
- *Streptococcus pyogenes*
- *Streptococcus agalactiae*
- Viridans streptococci
- *Clostridium perfringens*

Gram negative
- *Escherichia coli*
- Klebsiella strains
- Other enterobacteria
- *Pseudomonas aeruginosa*
- *Bacteroides species*

Acid fast bacilli
- *Mycobacterium tuberculosis*

Fungi
- *Candida*

Collection and Transport of Effusions

Sample collection in a hospital
1. After aspiration, aseptically
 - Dispense 5 ml fluid into a bottle of sterile thioglycollate broth and mix.
 - Dispense 3 ml fluid into a dry, sterile, screw-cap tube (Use this to perform cell count and protein estimation).

2. Label each bottle with the data (patient’s name, sample type, and medical world name).
3. Your medical secretary then sends the samples with a request form to the microbiology infection control collecting room (patient's {name, age, names of used antibiotics, diagnosis, and date of admission}, sample type, and medical world name).
4. Infection control technician well take the samples to the microbiology laboratory within a few hours. The inoculated thiglycollate broth should be kept in a warm environment, but not over 37 °C or in direct sunlight.

Sample Processing in a microbiology laboratory

Day 1

I. **Describe the Appearance of the Specimen**

Report:
- Color of the effusion
- Whether it is clear, cloudy, or purulent (like pus)
- Whether it contains blood

<table>
<thead>
<tr>
<th></th>
<th>Transudate</th>
<th>Exudate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>pale yellow, clear</td>
<td>purulent or cloudy or a blood-stained</td>
</tr>
<tr>
<td>Clotting</td>
<td>unclotted</td>
<td>Often clot</td>
</tr>
<tr>
<td>Cells</td>
<td>Few cells</td>
<td>Purulent: many cells, mostly neutrophils. Non purulent: few or many cells, mostly lymphocytes More than1000/ mm³</td>
</tr>
<tr>
<td></td>
<td>Less than 100/ mm³</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>Less than 2.5 g /dl</td>
<td>More than 3 g /dl</td>
</tr>
<tr>
<td>Culture</td>
<td>sterile</td>
<td>positive</td>
</tr>
</tbody>
</table>
Note:
- Purulent or Blood-stained effusion: examine and preliminary report well be send to the medical world after direct Gram stained smear as soon as possible. Proceed to examine the specimen as for pus.

II. Perform a Cell Count
Count the number of white cells in the effusion and report whether the cells are mainly polymorphonuclear neutrophils (pus cells) or lymphocytes.
A transudate contains Less than 100/ mm³ cells, whereas an exudate usually contains more than 1000/ mm³ cells.
If Cells count between 100 and 1000 / mm³ access other fluid parameters.

III. Estimate the Protein
A transudate usually contains less than 2.5 g/dl o protein whereas an exudate contains more than 3g/dl.

IV. Examine the Specimen Microscopically
Routine:

- Gram smear
Make a thin evenly spread smear of a purulent effusion or sediment from the centrifuged non purulent sample, when dry, fix the smear with methanol for 2 minutes and stain by Gram technique.
Examine the smear for pus cells and bacteria using 40x and 100x objectives.

- Ziehl-Neelsen smear
Make a smear on a slide using several drops of sediment from the centrifuged fluid. When dry, fix with methanol for 2-3 minutes. Stain by the Ziehl-Neelsen method I.
Examine the smear first with the 40 x objective to see the distribution of material and then with the 100x objective to detect the acid fast bacilli.
The AFB: usually few and therefore a careful search of the smear is required.

V. **Culture the Specimen**

Culture the effusion if it Exudate.
Centrifuge the sample in a sterile tube a high speed for about 20 minutes to sediment the bacteria. Remove the supernatant fluid (do not discard) and resuspend the sediment.

Routine:

Blood agar (aerobic and anaerobic), Chocolate agar and MacConkey agar.
- Incubate the chocolate agar plate in a carbon dioxide enriched atmosphere at 35-37 °C for up to 48 hours, checking for growth after overnight incubation.
- Incubate the blood agar plate anaerobically at 35-37 °C for up to 72 hours, examining for growth after overnight incubation.
- Incubate the MacConkey and blood agar plates aerobically at 35-37 °C overnight.

Additional:

Lowenstein Jensen medium if tuberculosis is suspected.

Day 2 and Onwards

Examine and Report the Cultures

Routine:

Chocolate agar, blood agar, and MacConkey agar cultures

Additional:

Lowenstein Jensen culture for Mycobacterium tuberculosis

Head of microbiology diagnostic infection control unit
Prof. Mohammad Abou El-Ela

Done by
Doaa Tawfik Masallat