Section 1

General Functional Organization of the Nervous System

1) The central nervous system includes all the following components, except :-
 a- spinal cord
 b- medulla oblongata
 c- autonomic ganglia
 d- diencephalon

2) The central nervous system is connected with the peripheral nervous system by all the following types of nerve fibers, except :-
 a- postganglionic autonomic fibers
 b- preganglionic autonomic fibers
 c- somatic motor fibers
 d- autonomic sensory fibers

3) The sensory system is involved in all the following, except :-
 a- initiation of reflex movements
 b- initiation of voluntary movements
 c- learning processes
 d- initiation of emotional responses
Section 2

Sensory System and Sensory Receptors

1) The two-element sensory receptors differ from other types of receptors in being:
 a- more numerous
 b- more widely spread in the body
 c- more sensitive
 d- composed of specialized cells at the sensory nerve terminals

2) Sensory receptors are classified functionally according to the following criteria, except:
 a- their location in the body
 b- the nature of tissues in which they are found
 c- the nature of stimuli acting on them
 d- their connection with cerebral coretx

3) Most sensory receptors:
 a- are stimulated by different types of stimuli
 b- are stimulated only by specific stimuli
 c- posses a high threshold for their specific stimuli
 d- only ‘b’ and ‘c’ are correct

4) A specific stimulus produces a receptor potential by:
 a- inhibiting Na+ influx into receptor
 b- inhibiting K+ efflux from receptor
 c- enhancing Na+ influx into receptor
 d- enhancing K+ efflux from receptor

5) Receptor potential initiated by an adequate stimulus:
 a- develops always at it full magnitudes
 b- undergoes temporal summation only
 c- undergoes spatial summation only
 d- could initiate an action potential

6) Once initiated, the receptor potential:
 a- spreads to a long distance along the sensory nerve fiber
 b- amplitude is not related to the strength of the stimulus
 c- always generates an action potential from the receptor
 d- stays for a variable period depending on the type of the receptor
7) Receptor potential generates :-
 a- an electrotonic current which is transmitted along sensory fibers to the CNS
 b- a nerve impulse at the receptive region of the receptor
 c- a state of hyperpolarization of the receptor membrane
 d- a nerve impulse at the spike initiating region of the receptor

8) When stimulated by effective steady stimuli, sensory receptors :-
 a- continuously discharge impulses
 b- stop discharging after a short time
 c- produce an initial high rate of impulse discharge followed by decline of this rate
 d- differ in their response; some types discharge continuously, while other types do not respond at all

9) Slowly adapting receptors include all the following types, except :-
 a- Golgi tendon organs
 b- warmth receptors
 c- free nerve endings
 d- Meissner corpuscles

10) Slowly adapting receptors differ from rapidly adapting receptors in :-
 a- stopping to discharge after a relatively longer period of constant stimulation
 b- detecting the dynamic properties of stimuli
 c- detecting velocity of stimuli
 d- generating receptor potentials as long as stimulus is applied.

11) Rapidly adapting receptors are involved in :-
 a- static reflex responses
 b- detection of joint movements
 c- regulation of heart rate
 d- only ‘a’ and ‘b’ are correct

12) Receptors detect stimulus intensity by :-
 a- lowering the threshold for receptor stimulation
 b- by generating receptor potentials having higher magnitudes
 c- by generating nerve impulses that are transmitted along sensory fibers at higher velocities
 d- by enhancing the central effects of sensory impulses
1) General sensations:-
 a- originate from all sensory receptors of the body
 b- are mediated by somatic sensory fibers only
 c- include the sense of movement
 d- include the sense of equilibrium

2) Detection of the stimulus modality depends upon :-
 a- the location of the receptors in the body
 b- the magnitude of the stimulus
 c- the anatomical connections between the receptors and specific sensory areas in the cerebral cortex
 d- the magnitude of the receptor potential

3) Receptors detect stimulus intensity by :-
 a- lowering the threshold for stimulating receptors
 b- raising the threshold for stimulating receptors
 c- decreasing the magnitude of receptor potential
 d- raising the magnitude of receptor potential

4) The ability to localize the site of stimuli depends upon :-
 a- the type of the stimulated receptor
 b- connections between the receptor and the sensory cortex
 c- the rate of adaptation of the stimulated receptors
 d- the nature of the stimulus
Section 4

Mechanoreceptive Sensations

1) Touch receptors :-
 a- are found only in the skin
 b- are all encapsulated receptors
 c- include two-element receptors
 d- are stimulated by vibration

2) Tactile receptors include all the following receptors, except :-
 a- free nerve endings
 b- hair follicle receptors
 c- hair cell receptors
 d- Ruffini nerve endings

3) Rapidly adapting tactile receptors include all the following types, except :-
 a- Merkel discs
 b- Meissner corpuscles
 c- Pacinian corpuscles
 d- hair end organs

4) Fine touch :-
 a- is detected by slowly adapting touch receptors
 b- is transmitted by the spinothalamic tract
 c- is characterized by it emotional affect
 d- is not involved in feeling the texture of touched objects

5) Crude touch is more effective than fine touch in evoking an emotional response because :-
 a- its provoking stimuli are stronger
 b- its central pathway connects with the limbic system
 c- it is stimulated during emotional excitement
 d- the provoking stimuli have an emotional nature

6) A more developed two-point tactile discrimination :-
 a- indicates a greater threshold distance for feeling of two points of touch applied simultaneously
 b- is seen in the proximal regions of the body compared with the distal regions
 c- is inversely related to the size of the receptive fields of the stimulated sensory units
 d- depends upon the type of the involved touch receptor
7) Proprioceptive sensations include all the following, except :-
 a- position sense
 b- equilibrium sense
 c- movement sense
 d- kinesthetic sense

8) Proprioceptors include all the following types of receptors, except :-
 a- muscle spindles
 b- pressure receptors
 c- vestibular receptors
 d- joint receptors

9) Proprioceptive sensations are transmitted by all the following pathways, except :-
 a- spinothalamic tracts
 b- spinocerebellar tract
 c- gracile tract
 d- cuneocerebellar tract

10) Astereognosis :-
 a- indicates inability to localize the site of touch on the body surface
 b- results from lesions of the secondary somatic sensory area
 c- associates parietal lobe neglect
 d- results from loss of crude touch sensation

11) Parietal lobe neglect :-
 a- is characterized by inability to use skeletal muscles on the opposite side of the body
 b- is characterized by inability to use skeletal muscles on the same side of the body
 c- results from damage of primary sensory cortex.
 d- causes loss of sensations on the same side of the body
Section 5

Pain Sensation

1) Pain sensation :-
 a- is evoked by strong stimulation of specific receptors
 b- produces reactions that block transmission of pain impulses
 c- arises from small encapsulated receptors
 d- occurs when the stimulus causes damage of the sensory receptors

2) Reaction to pain includes all the following, except :-
 a- increased heart rate
 b- depression
 c- withdrawal reflexes
 d- stoppage of impulse discharge from nociceptors in chronic painful conditions

3) Pain receptors :-
 a- become more sensitive with prolonged stimulation
 b- are stimulated by prostaglandins
 c- are more numerous in viscera than other tissues
 d- include different morphological types

4) Pain threshold :-
 a- is the highest intensity of stimulus that causes pain
 b- is the lowest intensity of stimulus that causes pain
 c- differs markedly among different individuals
 d- is elevated by substance P

5) Fast pain differs from slow pain in :-
 a- being transmitted in the dorsal column pathway
 b- evoking a depressor autonomic reaction
 c- having a sharp quality
 d- arising from encapsulated pain receptors

6) Double pain sensation that is occasionally felt following painful stimulation of the skin is due to :-
 a- repetition of the painful stimulus
 b- presence of dual pain pathways
 c- perception of pain at two different higher centers
 d- application of two painful stimuli simultaneously at two different sites
7) Cutaneous pain :-
 a- is always sharp in character
 b- is transmitted by Aδ sensory fibers
 c- is always followed by hyperalgesia
 d- evokes spasm of nearby muscles

8) Primary cutaneous hyperalgesia :-
 a- develops in the normal skin region around the area of flare
 b- is an abnormal condition in the skin in which painful stimuli become more severe
 c- is due to changes in threshold of pain receptors
 d- is associated with throbbing type of pain

9) Deep pain shows the following characteristics, except :-
 a- dull aching
 b- throbbing
 c- evokes flexor reflexes
 d- diffuse

10) Intermittent Claudications evoke :-
 a- visceral pain
 b- deep pain
 c- cutaneous hyperalgesia
 d- colicky pain

11) Pain produced by muscle spasm results from :-
 a- mechanical stimulation of pain receptor by muscle spasm
 b- decreased release of lactic acid from the spastic muscle fibers
 c- release of compounds from the spastic muscle which increase the threshold for stimulation of pain receptors
 d- decreased oxygen supply to the muscle

12) Visceral pain :-
 a- is more common than the other types of pain
 b- arises only from wall of the visceral organs
 c- is often well localized
 d- evokes depressor autonomic reactions

13) Stimuli which evoke true visceral pain include all the following, except :-
 a- sharp cutting
 b- stretching
 c- spasm
 d- chemical irritation
MCQ : Central Nervous System

14) Visceral pain is usually felt :-
 a- deeply in the diseased viscera
 b- in deep tissues close to the diseased viscera
 c- in skin areas that just overlie the diseased viscera
 d- in skin areas remote from the diseased viscera

15) Intracranial headache could result from painful stimuli applied on :-
 a- the dura lining the inner surface of the bones of cranial vault
 b- the brain tissue
 c- wall of big intracranial veins
 d- arachnoid mater

16) Intracranial headache may result from all the following clinical causes, except :-
 a- decreased CSF pressure
 b- spasm of scalp muscles
 c- distension of big venous sinuses
 d- pressure upon tentorium cerebelli

17) Transmitters in pain control system include all the following, except :-
 a- serotonin
 b- acetylcholine
 c- enkephalin
 d- norepinephrine

18) Enkephalin binds best with :-
 a- delta ‘δ’ opiate receptors
 b- mu ‘μ’ opiate receptors
 c- kappa ‘κ’ opiate receptors
 d- all opiate receptors with equal affinity

19) Pain control system :-
 a- is activated whenever a painful stimulus is applied to body tissues
 b- is never activated naturally
 c- is activated only by administration of opiate drugs
 d- is activated naturally under conditions associated with strong emotional excitement
20) Enkephalin blocks pain transmission by :-
 a- blocking the response of pain receptors to painful stimuli
 b- slowing down transmission of pain impulses through synapses in the pain pathway
 c- inhibiting the response of the cerebral cortical somatic sensory area to pain signals
 d- blocking Ca ++ channels in the central terminals of pain sensory fibers

21) The spinal pain gate is :-
 a- Ligand controlled
 b- voltage controlled
 c- opened by enkephalin
 d- closed by substance P
Section 6
Thermal Sensations

1) Thermal sensations :-
 a- are evoked by all changes in environmental temperatures
 b- are evoked by stimulation of thermo-sensitive pain receptors
 c- are involved in regulation of metabolic activity
 d- are transmitted by Aβ sensory fibers

2) Thermal receptors are :-
 a- slowly adapting receptors
 b- rapidly adapting receptors
 c- biphasic receptors
 d- all encapsulated receptors
Section 7

Synapses of the Central Nervous System

1) Connexons of gap junctions in electric synapses:-
 a- are Ligand-gated
 b- are voltage-gated
 c- allow transmission of potential changes in both directions between the pre- and post- synaptic neurons
 d- close whenever the presynaptic neuron becomes hyperpolarized

2) Chemical synapses in the nervous system :-
 a- allow diffusion of chemical substances form the presynaptic neuron into the postsynaptic neuron
 b- allow transmission of potential changes in one direction only; from the presynaptic to the postsynaptic neurons
 c- have potential-gated ionic channels
 d- are more numerous in the peripheral nervous system than the central nervous system

3) Synaptic cleft :-
 a- is the space between two synapses on the surface of neurons
 b- allow diffusion of transmitters between neurons
 c- is filled with intracellular fluid
 d- ranges between 20 – 30 μm in width

4) Synaptic knobs :-
 a- synthesize different types of neurotransmitters
 b- release neurotransmitters by diffusion across their membranes
 c- have ligand-gated Ca ++
 d- are located at the terminal end of dendrites

5) Synaptic transmission depends upon :-
 a-direct transmission of impulses from the presynaptic neuron to the postsynaptic neuron
 b- diffusion of neurotransmitters from synaptic knobs into the soma and dendrites of postsynaptic neurons
 c- presence of voltage-gated Ca ++ channels in membrane of synaptic knobs
 d- presence of voltage-gated Ca ++ channels in the subsynaptic membrane
MCQ : Central Nervous System

6) Postsynaptic receptors include all the following types, except :-
 a- G-protein coupled receptors
 b- ligand-gated cation channels
 c- G-protein regulated K + channels
 d- voltage-gated Cl- channels

7) When opened, the ligand-gated cation channels do not allow diffusion of Cl- because :-
 a- the size of Cl- is bigger than the bore of the channels
 b- intracellular negativity causes complete inhibition of Cl- influx
 c- the channels are specific for diffusion of Na + only
 d- the inner surface of the channels is negatively charged

8) Opening of ligand-gated Cl- channels causes :-
 a- inhibition of the postsynaptic neuron
 b- depolarization of the postsynaptic neuron
 c- initiation of an action potential
 d- block of ligand-gated cation channels

9) IPSP differs from EPSP in :-
 a- being of shorter duration
 b- being unable o summate spatially
 c- moving the membrane potential away from threshold
 d- depending upon opening of voltage K + channels

10) When EPSp and IPSP occur simultaneously the postsynaptic membrane :-
 a- becomes depolarized
 b- becomes hyperpolarized
 c- initiates an action potential
 d- shows potential changes that depend upon the summation of their effects

11) When a postsynaptic neuron is adequately stimulated, action potentials develop at the initial segment of the axon because :-
 a- it contains many voltage-gated Na + channels
 b- it contains the highest concentration of ligand-gated cation channels
 c- it contains many voltage-gated Ca ++ channels
 d- it is more sensitive to the direct stimulant effect of neurotransmitters

12) IPSP could result from :-
 a- opening of K + channels
 b- opening of ligand-gated cation channels
 c- closure of Cl- channels
 d- closure of potential-gated Ca ++ channels
13) Synaptic transmission is terminated by :-
a- block of presynaptic receptors
b- elevation of Ca ++ concentration in synaptic cleft
c- reuptake of neurotransmitters by postsynaptic neurons
d- degradation of neurotransmitters by specific enzymes

14) Presynaptic inhibition is characterized by all the following, except :-
a- increased Cl- influx into presynaptic terminals
b- increased Ca ++ influx into presynaptic terminals
c- decreased response of postsynaptic receptors
d- hyperpolarization of presynaptic terminals

15) Presynaptic inhibition depends upon :-
a- augmented release of chemical transmitter from presynaptic terminals
b- continued depolarization of presynaptic terminals
c- GABA receptors in presynaptic terminals
d- opening of voltage-gated Ca ++ channels in presynaptic terminals

16) In chemical synapses, transmission occurs in a forward direction because :-
a- neurotransmitter receptors are found only in the postsynaptic membrane
b- the subsynaptic membrane does not contain neurotransmitter vesicles
c- the subsynaptic membrane is more sensitive than the membrane of synaptic knob to the effect of neurotransmitters
d- the subsynaptic membrane contains both ligand-gated and voltage-gated ionic channels

17) Synaptic delay :-
a- is the time needed for release of neurotransmitter from synaptic vesicles
b- the minimal delay time in the central nervous system is about 0.5 millisecond
c- is determined by the type of the neurotransmitter
d- is determined by the number of postsynaptic receptors

18) Synaptic fatigue is due to :-
a- decreased synthesis of neurotransmitters
b- inability to release neurotransmitters by exocytosis
c- failure of action potentials to open voltage-gated Ca ++ channels in presynaptic terminal
d- imbalance in between rates of synthesis and release of neurotransmitters
19) Synaptic transmission is inhibited by all the following, except :-
 a- oxygen lack
 b- alkalosis
 c- acidosis
 d- prolonged activity of synapse

20) Post-tetanic Potentiation in synapses :-
 a- is due to increased Ca ++ concentration in postsynaptic neurons
 b- is due to increased Ca ++ influx into presynaptic neurons
 c- results from slow prolonged stimulation of synapse
 d- causes fatigue of the synapse

21) Long-term potentiation of synaptic transmission :-
 a- is involved in pain control system
 b- is caused by increased Ca ++ concentration in presynaptic neurons
 c- results from fast repetitive stimulation of synapse
 d- is associated with decreased Ca ++ concentration in postsynaptic neurons

22) Drugs which open Cl- channels in synapses :-
 a- cause depolarization of postsynaptic membrane
 b- cause hyperpolarization of postsynaptic membrane
 c- enhance release of neurotransmitters from synaptic knobs
 d- enhance response of postsynaptic neurons

23) Small-molecule neurotransmitters include all the following types, except :-
 a- Substance P
 b- gamma amino butyric acid
 c- acetylcholine
 d- norepinephrine

24) Neuropeptides :-
 a- are synthesized in the synaptic knobs
 b- consist of small molecules
 c- interact with ligand-receptors
 d- could produce prolonged changes in the structure of postsynaptic neurons

25) All the following transmitters are neuropeptides, except :-
 a- neuropeptide Y
 b- somatostatin
 c- dopamine
 d- enkephalin
26) Actions of neuropeptides include all the following, except:
 a- inhibition of gene transcription
 b- decreased cyclic AMP synthesis
 c- changing intracellular Ca ++ level
 d- activation of ligand-gated receptors
Section 8

Motor Functions of the Spinal Cord: Spinal Reflexes

1) Higher motor commands originate in all the following centers, except :-
 a- cerebral cortex
 b- thalamus
 c- caudate nucleus
 d- cerebellum

2) A reflex action :-
 a- is a fast brief response to a sensory stimulus
 b- is involved in regulation of voluntary movements
 c- includes at least three sequential sets of neurons in its pathway
 d- is always initiated whenever its specific receptors are effectively stimulated by a specific stimulus

3) Reflex actions could be classified according to :-
 a- the type of sensory receptors initiating them
 b- the type of afferent nerves mediating them
 c- the type of efferent nerves mediating them
 d- the type of neurotransmitters mediating them

4) Events of reflex actions include all the following, except :-
 a- stimulation of sensory receptors
 b- stimulation of central synapses
 c- inhibition of sensory receptors
 d- inhibition of central synapses

5) A reflex arc includes :-
 a- at least two sets of sequential neurons
 b- at least two sequential sets of central synapses
 c- at least two types of sensory receptors
 d- at least two types of efferent neurons
MCQ : Central Nervous System

6) The central terminals of afferent neurons mediating spinal reflexes are distributed within the spinal cord, so that :-
a- all of them terminate in the same spinal segment of their entry to the cord
b- all of them terminate on interneurons
c- all of them subserve spinal reflexes
d- they provide pathways for divergence of the incoming sensory impulses

7) Interneurons :-
a- provide communication between the central ends of afferent neurons
b- provide communication between dendrites of the efferent neurons
c- influence the rate of discharge from the alpha motor neurons
d- participate in ascending sensory pathways

8) The divergence function of interneurons is involved in :-
a- temporal summation
b- spatial summation
c- reverberation
d- irradiation

9) Interneuron after-discharge circuits prolong the duration of :-
a- sensory input to the spinal motor centers
b- synaptic delay in central synapses
c- discharge of efferent neurons
d- conscious perception of the evoked sensation

10) A flexor withdrawal reflex shows all the following properties, except :-
a- recruitment
b- prepotent
c- non-fatigable
d- irradiation

11) Flexor reflexes do not involve :-
a- flexor muscles
b- extensor muscles
c- reciprocal inhibition
d- reflex spasm of the involved muscles

12) The ability of stronger stimuli to produce wider range of reflex responses depends upon :-
a- presence of reverberating circuits in reflex pathway
b- presence of parallel-chain circuits in reflex pathway
c- convergence of interneurons
d- divergence of interneurons
13) Recruitment of a reflex response is due to :-
 a- difference in the amount of presynaptic inputs to the various efferent
 neurons initiating the reflex
 b- difference in the conduction velocity of the various afferent neurons
 mediating the reflex
 c- delay at the neuromuscular junction
 d- presence of inhibitory interneurons in the reflex pathway

14) After-discharge of reflex responses :-
 a- increase the magnitude of the reflex responses
 b- delays the onset of fatigue of reflex responses
 c- involves interneuron circuits
 d- depends upon spatial summation

15) Central delay of reflex actions :-
 a- is due to presence of inhibitory interneurons in the reflex pathway
 b- is the time between stimulation of receptors and response of the effector
 muscle
 c- is longer in the flexor reflex than in the stretch reflex
 d- is determined by the velocity of conduction of impulses along the afferent
 and efferent neurons in the reflex pathway

16) Fatigue of reflexes :-
 a- develops gradually and recovers rapidly
 b- develops rapidly and recovers slowly
 c- develops gradually and recovers slowly
 d- develops rapidly and recovers rapidly

17) In flexor withdrawal reflexes contraction of flexor muscles is associated
 with reciprocal inhibition of :-
 a- synergistic flexor muscles
 b- contralateral extensor muscles
 c- ipsilateral extensor muscles
 d- both ‘a’ and ‘b’ are correct

18) Reciprocal inhibition between reflexes depends upon all the following,
 except :-
 a- presence of inhibitory interneurons in the reflex pathways
 b- presence of excitatory interneurons in the reflex pathways
 c- presence of anion channels in membranes of the involved neurons
 d- release of inhibitory transmitters which block cation channels in the
 reflex pathways
19) stretch reflex is characterized by the following except :-
a- disynaptic reflex
b- high localization
c- shows reciprocal innervations.
d- it is of graded response

20) Stretch of an innervated muscle evokes :-
a- contraction of its spindles
b- contraction of its extrafusal fibers
c- contraction of antagonistic muscles
d- relaxation of synergistic muscles

21) Muscle spindles :-
a- are found in all skeletal muscles
b- are found only in large skeletal muscles
c- consist of small numbers of extrafusal muscle fibers
d- consist of a large number of extrafusal muscle fibers

22) The nuclear-bag fibers of muscle spindles are innervated by :-
a- Aγ nerve fibers
b- Aβ nerve fibers
c- Aδ nerve fibers
d- Ia nerve fibers

23) The nuclear-chain fibers of spindles are innervated by :-
a- Aα and Aδ nerve fibers
b- Aδ and C nerve fibers
c- Ia and II nerve fibers
d- only type II nerve fibers

24) The central ends of afferents from muscle spindles synapse with all the following types of neurons, except :-
a- α-motor neurons of the same muscle
b- γ-motor neurons of the same muscle
c- local interneurons
d- 2nd order neurons of ascending sensory pathways
25) γ-motor innervation of muscle spindles produces:
 a- contraction of the central region of the spindle fibers
 b- increased sensory discharge from the central region of the spindle fibers
 c- decreased sensory discharge from the central region of the spindle fibers
 d- relaxation of the peripheral regions of the spindle fibers

26) Discharge from muscle spindles could be increased by all the following, except:
 a- increased α-motor neuron discharge
 b- increased γ-motor neuron discharge
 c- stretch of the intrafusal muscle fibers
 d- stretch of the extrafusal muscle fibers

27) Increased γ-motor neuron discharge stimulates muscle spindles, because:
 a- it produces stretch of the extrafusal muscle fibers
 b- it causes stretch of the peripheral regions of the intrafusal fibers
 c- it causes stretch of the central region of the intrafusal fibers
 d- it stimulates directly the sensory fibers innervating muscle spindles

28) γ-motor neuron discharge to a muscle is inhibited by impulses reaching the γ-motor neurons from all the following source, except:
 a- Golgi tendon organs of the same muscle
 b- spindles of antagonistic muscles
 c- medullary reticular formation
 d- pontine reticular formation

29) When the γ-motor neuron discharge to a muscle decreases, it causes:
 a- increased muscle spindle discharge
 b- shortening of the spindle fibers
 c- stronger contraction of the extrafusal muscle fibers
 d- decreased spindle sensitivity to stretch

30) The role of muscle spindles in the maintenance of the upright posture depends upon all the following, except:
 a- contraction of the peripheral contractile part of spindle fibers
 b- increased sensory discharge from spindles of postural muscles
 c- increased supraspinal facilitation to the γ-motor neurons of postural muscles
 d- presence of greater numbers of spindles in postural muscles
31) The role of γ-motor neurons in regulation of equilibrium is achieved by:
 a- initiating contraction of spindle fibers which directly antagonize postural deviation
 b- increasing spindle sensitivity to stretch
 c- directly stimulating extrafusal muscle fibers to antagonize postural deviation
 d- directly adjusting the discharge of α-motor neurons innervating the extrafusal muscle fibers to antagonize postural deviation

32) Interruption of γ-motor neuron discharge to a skeletal muscle produces:
 a- contraction of the muscle
 b- contraction of the spindle fibers
 c- relaxation of the spindle fibers
 d- increased sensory discharge from the spindle fibers

33) Co-activation of α and γ-motor neurons:
 a- increases γ-motor neuron discharge whenever the activity of α-motor neurons rises to a high level
 b- is mediated by interneurons that link the α and γ-motor neurons
 c- maintains the proprioceptive information to higher centers during muscle contraction
 d- increases the α-motor neuron discharge whenever the activity of γ-motor neurons rises to a high level

34) Increased sensory discharge from muscle spindles:
 a- decreases muscle tone
 b- increases muscle tone
 c- could either increase or decrease muscle tone according to the muscle affected
 d- has no effect on muscle tone

35) Interruption of spindle discharge from a muscle causes contraction of the muscle to become jerky and irregular due to:
 a- increased activity of reverberating circuits causing fluctuation of the motor discharge to the muscle
 b- increased activity of inhibitory interneurons causing oscillating inhibition of the α-motor neurons of the muscle
 c- irregular discharge of excitatory inputs to the α-motor neurons of the muscle
 d- post-tetanic potentiation of the α-motor neurons of the muscle
36) Whenever the position of a joint is stabilized at a certain attitude, the nervous system produces this by :-
 a- increasing the α-motor neuron discharge to all muscles attached to the joint
 b- increasing the γ-motor neuron discharge to all muscles attached to the joint
 c- increasing γ-motor neuron discharge to postural muscles
 d- co-activation of α and γ-motor neurons innervating the involved muscles

37) The highly localized nature of stretch reflex is due to :-
 a- the limited number of interneurons in the reflex pathway
 b- all the central ends of afferents from spindles of the stretched muscle terminate on the α-motor neurons of the muscle
 c- the α-motor neurons of the stretched muscle receive most of the central terminals of afferents coming from spindles of the muscle
 d- activation of inhibitory interneurons which inhibit the motor neurons of the surrounding muscles

38) The shortest reflex time is recorded with :-
 a- a flexor withdrawal reflex
 b- an inverse stretch reflex
 c- a stretch reflex
 d- a scratch reflex

39) When a skeletal muscle is suddenly stretched :-
 a- it relaxes suddenly
 b- it develops a static stretch reflex
 c- it develops a dynamic stretch reflex
 d- it develops clonic contractions

40) Sensory impulses from spindles of a stretched muscle could inhibit antagonistic muscles by :-
 a- directly inhibiting γ-motor neurons of the antagonistic muscles
 b- directly inhibiting the α-motor neurons of the antagonistic muscles
 c- inhibiting the transmitter release from the central terminals of afferents from the spindles of the antagonistic muscles
 d- activation of inhibitory interneurons

41) Antigravity muscles maintain stretch reflex for prolonged periods without fatigue, because :-
 a- they are heavily innervated by α-motor neurons
 b- they obtain their energy needs mainly from anaerobic metabolic processes
 c- they contain exceptionally high levels of creatine phosphate
 d- they are rich in mitochondria
42) The discharge from Golgi tendon organs initiated by excessive stretch of a skeletal muscle produces :-

a- inhibition of α-motor neurons of antagonistic muscles
b- inhibition of γ-motor neurons of antagonistic muscles
c- inhibition of α-motor neurons of the same muscle
d- stimulation of γ-motor neurons of the same muscle

43) Inverse stretch reflex :-

a- increases the possibility of avulsion of the excessively stretched muscle from its bony attachments
b- has no reciprocal innervation circuits
c- is clinically manifested by lengthening reaction
d- is clinically tested by examining the tendon jerks

44) Skeletal muscle tone :-

a- is a dynamic stretch reflex
b- has a dynamic state
c- is increased during rest
d- is decreased during standing upright

45) γ-motor neurons control muscle tone by :-

a- adjusting the supraspinal facilitatory discharge
b- adjusting the α-motor neuron discharge
c- adjusting the muscle spindle discharge
d- adjusting the activity of interneurons in the reflex arc of muscle tone

46) Adequate level of muscle tone is essential for the accurate performance of voluntary movements, because :-

a- it adjusts the α-motor neuron discharge initiating voluntary movements
b- it adjusts posture of proximal joints of the acting limbs
c- it adjusts the upright posture of the whole body during voluntary movements
d- it adjusts sensitivity of the spindles of the involved muscles

47) A tendon jerk :-

a- is a dynamic stretch reflex
b- is a static stretch reflex
c- is evoked by gradually stretching the muscle
d- is evoked by stimulation of tendon receptors
48) The tendon jerk which has its center in the 5th and 6th cervical segments of the spinal cord is :-
 a- the jaw jerk
 b- the deltoid jerk
 c- the biceps jerk
 d- the triceps jerk

49) Tendon jerks are clinically examined to assess :-
 a- integrity of muscle spindles
 b- integrity of reflex pathway
 c- the total reflex time of the jerk
 d- central delay time of the jerk

50) Absence of a tendon jerk could result from any of the following conditions, except :-
 a- lesions of supraspinal facilitatory centers
 b- lesions of the efferent neurons
 c- lesions of the afferent neurons
 d- lesions of the spinal nerve centers

51) Exaggeration of tendon jerks could result from any of the following conditions, except :-
 a- lesions of supraspinal facilitatory centers
 b- lesions of supraspinal inhibitory centers
 c- increased \(\gamma \)-motor neuron discharge
 d- anxiety

52) Clonus :-
 a- is a sign of decreased supraspinal facilitation
 b- initiated by briefly stretching the tendon of the muscle
 c- is manifested as oscillating mechanical vibrations following tendon jerks
 d- associates exaggeration of tendon jerks
Section 9

The Descending Motor Systems

1) All of the following are descending motor tracts, except :-
 a- Rubrospinal tract
 b- Spinotectal tract
 c- Reticulospinal tract
 d- Corticobulbar tract

2) Corticospinal tract originates from all the following areas, except :-
 a- premotor area in the frontal lobe
 b- prefrontal area in the frontal lobe
 c- supplemental motor area in the frontal lobe
 d- somatic sensory area in the parietal lobe

3) The cranial motor nuclei which receive innervation only from the contralateral corticobulbar tract are :-
 a- nuclei of the trigeminal and vagus nerves
 b- nuclei of the vagus and glossopharyngeal nerves
 c- nuclei of the facial and hypoglossal nerves
 d- nuclei of the facial and glossopharyngeal nerves

4) Axons of the lateral corticospinal tract synapse mainly with :-
 a- lateral motor neurons
 b- medial motor neurons
 c- intermediolateral neurons
 d- interneurons

5) The lateral motor system includes :-
 a- the lateral Reticulospinal tract
 b- the lateral corticospinal tract
 c- the lateral vestibulospinal tract
 d- all the above tracts

6) The corticobulbospinal tract is involved in all the following, except :-
 a- voluntary movements
 b- postural adjustment
 c- automatic movements
 d- initiation of tendon jerks
7) The Rubrospinal tract :-
 a- originates from the pontine reticular formation
 b- descends contralaterally
 c- controls activity of axial muscles
 d- is a component of the medial motor system

8) The reticulospinal tracts :-
 a- are inhibitory to muscle tone
 b- are excitatory to muscle tone
 c- are either excitatory or inhibitory to muscle tone
 d- have effect on muscle tone

9) Vestibulospinal tracts :-
 a- adjust the discharge of vestibular receptors
 b- adjust muscle tone
 c- antagonize the effects of rubrospinal tract
 d- terminate on the lateral motor neurons in the spinal cord

10) Tectospinal tract :-
 a- originate mainly from the inferior colliculus
 b- originate mainly from the medial geniculate body
 c- mediate responses initiated by sudden changes of head position
 d- terminate in the cervical segments of the cord

11) representation of the body in the primary motor area :-
 a- is ipsilateral
 b- is upright
 c- is disproportionate to the actual anatomical size of the represented region
 d- all the above are correct

12) the primary motor area receives inputs arising from all the following centers, except :-
 a- basal ganglia
 b- cerebellum
 c- hypothalamus
 d- thalamus

13) The primary motor area projects efferent fibers to all the following centers, except :-
 a- 1ry somatic sensory area
 b- premotor area
 c- supplemental motor area
 d- brainstem motor nuclei
14) The premotor area includes all the following, except:
 a- Broca’s area
 b- head rotation area
 c- supplemental motor area
 d- hand skills area

15) Supplemental motor area is involved in all the following functions, except:
 a- adjusting posture
 b- orienting responses
 c- motor programming
 d- coordinating bilateral movements
Section 10

LMN Lesions, UMN Lesions, and Spinal Cord Lesions

1) Lower motor neuron lesions cause all the following, except :-
 a- decreased number of transmitter receptors in the denervated muscle
 b- atrophy of the denervated muscle
 c- flaccid paralysis of the denervated muscle
 d- loss of flexion withdrawal reflex

2) Fasciculations of lower motor neuron lesions :-
 a- are caused by injury currents initiated in the denervated muscle fibers
 b- can be recorded by electromyogram
 c- consist of asynchronous contraction of the muscle fibers composing a motor unit
 d- develop later than fibrillations of the muscle fibers

3) Denervation supersensitivity of the muscle in LMN lesions is due to :
 a- increased release of neurotransmitter from the degenerating nerve terminals
 b- decreased release of neurotransmitter from the degenerating nerve terminals
 c- increased number of transmitter receptors in fibers of the denervated muscle
 d- decreased number of transmitter receptors in fibers of the denervated muscle

4) When compared to normal muscle, the response of the denervated muscle to electrical stimulation shows :
 a- decreased chronaxie
 b- greater response to faradic stimulation
 c- abnormal response to galvanic stimulation
 d- CCC becomes greater than ACC

5) The most dramatic effects of an UMN lesion occurs with lesions at the level of :-
 a- the 1ry motor area
 b- internal capsule
 c- medullary pyramids
 d- lateral column of spinal white mater
MCQ : Central Nervous System

6) Motor defects that result from an internal capsular lesion include :-
 a- Paralysis of all skeletal muscles on the opposite side of the body
 b- Paralysis of all skeletal muscles on the same side of the body
 c- Paresis of axial muscles on the same side of the body
 d- Paralysis of the distal muscles on the opposite side of the body

7) Internal capsular lesions cause marked paralysis of the following muscles,
 except :-
 a- Tongue muscles
 b- Upper facial muscles
 c- Lower facial muscles
 d- Distal limb muscles

8) Hypertonia of UMN lesions is characterized by :-
 a- Increased inhibitory discharge from the premotor area
 b- Inhibition of pontine reticular formation
 c- Increased γ-motor neuron discharge
 d- Decreased muscle spindle discharge

9) In UMN lesions the response to plantar reflex :-
 a- Becomes exaggerated
 b- Becomes inhibited
 c- Becomes modified
 d- Is absent

10) In UMN lesions the response of the paralyzed muscles to electrical
 stimulation is :-
 a- Exaggerated
 b- Inhibited
 c- Not changed
 d- Is absent

11) Spasticity of the paralyzed muscles in UMN lesions is associated with :-
 a- Inhibition of tendon jerks
 b- Remarkable wasting of the muscle
 c- Clonus
 d- None of the above

12) Spinal shock is due to :-
 a- Severe pain felt at the site of the lesion
 b- Severe hypotensive shock
 c- Interruption of the ascending sensory pathways
 d- Interruption of the descending facilitatory tracts
13) The stage of spinal shock is characterized by the following except:-
 a- failure of spinal reflexes below the level of the lesion
 b- loss of sensations from the body below the level of the lesion
 c- loss of voluntary movement from the body below the level of the lesion
 d- exaggerated tendon jerks below the level of the lesion

14) In humans the usual duration of the stage of spinal shock is :-
 a- from 2-6 hours
 b- from 2-6 days
 c- from 2-6 weeks
 d- from 2-6 months

15) failure of spinal reflexes during the stage of spinal shock causes :-
 a- automatic micturition
 b- hypotension
 c- Babinski sign
 d- Spasticity of the paralyzed muscles

16) Complete transection of the spinal cord produces all of the following effects, except :-
 a- permanent loss of all sensations mediated by the cord below level of lesion
 b- permanent loss of voluntary movements by muscles innervated by the cord below level of lesion
 c- permanent loss of reflexes mediated by the cord below level of lesion
 d- temporary loss of micturition reflexes

17) Complete transection of the spinal cord did not affect arterial blood pressure when the lesion occurs at level of :-
 a- mid-cervical segments
 b- upper thoracic segments
 c- lower thoracic segments
 d- mid-lumbar segments

18) The earliest spinal reflex that recovers after the stage of spinal shock is :-
 a- the micturition reflex
 b- the scratch reflex
 c- the stretch reflex
 d- the flexor reflex
19) With recovery of arterial blood pressure following spinal cord transection, the recovered blood pressure tends to :-
 a- be higher than normal
 b- be lower than normal
 c- show abnormal oscillations
 d- drop progressively

20) Recovery of micturition reflexes following the stage of shock :-
 a- is due to recovery of supraspinal facilitation to the micturition center in the sacral segments
 b- is due to recovery of activity of the micturition center in the sacral segments
 c- causes retention with overflow
 d- causes normal micturition

21) Failure of the spinal reflexes is manifested by :-
 a- automatic micturition
 b- appearance of Babinski sign
 c- loss of sensations from regions innervated by the cord below the level of the lesion
 d- disappearance of the tendon jerks

22) Brown-Sequard syndrome is characterized by all the following, except :-
 a- loss of vibration sense on the opposite side below level of the lesion
 b- loss of voluntary movements on the same side below the level of the lesion
 c- loss of reflex movements on the same side at the level of the lesion
 d- loss of pain sensation on the opposite side below the level of the lesion
Section 11
Vestibular Apparatus

1) All the following are components of the vestibular apparatus, except :-
 a- crista ampullaris
 b- vestibular hair cells
 c- vestibular nucleus
 d- saccule

2) Which of the following are co-planar canals :-
 a- Anterior vertical canal on one side and posterior vertical canal on same side
 b- Anterior vertical canal on one side and posterior vertical canal on opposite side
 c- Anterior vertical canal on one side and anterior vertical canal on opposite side
 d- Anterior vertical canal on one side and anterior horizontal canal on same side

3) The crista ampullaris is sensitive to :-
 a- sound vibrations
 b- force of gravity
 c- linear acceleration
 d- angular acceleration

4) Vestibular hair cells :-
 a- are provided with cilia allover their surface
 b- are innervated by cochlear nerve fibers
 c- are stimulated by a chemical transmitter released from the terminals of the innervating nerve fibers
 d- are sensitive to mechanical stimuli

5) Hair cells of the crista are stimulated by :-
 a- bending of their stereocilia toward any direction
 b- movement of endolymph in any direction
 c- bending of stereocilia toward kinocilium
 d- bending of stereocilia away from kinocilium
6) Maculae of vestibular apparatus are:
 a- stimulated by movement of endolymph over their surface
 b- stimulated during standing upright but inhibited in the recumbent posture
 c- alter the pattern of their discharge by head tilting
 d- contain otoconia that press on hair cells to initiate resting basal discharge

7) Asymmetrical bilateral discharge from the SCCs occurs:
 a- on exposure to a linear movement
 b- during constant speed angular movement
 c- by tilting of the head
 d- in labyrinthitis

8) Vertigo:
 a- is a post-rotational sense of being rotated toward opposite side of original rotation
 b- is a post-rotational sense of being rotated toward same side of original rotation
 c- is a rotational sense of being rotated toward opposite side of original rotation
 d- is a rotational sense of being rotated toward same side of original rotation

9) Nystagmus:
 a- occurs as a result of symmetrical bilateral discharge from the SCCs at the onset of rotation
 b- occurs as a result of symmetrical bilateral discharge from the SCCs at the end of rotation
 c- prevents stabilization of the eye balls on visual objects
 d- is a vestibulo-ocular reflex

10) Post-rotational alteration of muscle tone:
 a- results from altered pattern of macular discharge
 b- maintains equilibrium during this phase
 c- results from increased discharge from the SCCs on both sides
 d- results from increased discharge from the SCCs on opposite side of rotation.
Section 12

Thalamus and Reticular Activating System

1) Specific thalamic nuclei include all the following, except :-
 a- reticular nuclei
 b- medial geniculate body
 c- pulvinar
 d- medial nuclei

2) The posteroventral nucleus of the thalamus projects to all the following centers, except :-
 a- frontal motor areas
 b- primary somatic sensory area
 c- somatic sensory association area
 d- parieto-occipito-temporal association area

3) The intralaminar thalamic nuclei produce :-
 a- inhibition of cerebral cortex during sleep
 b- inhibition of reticular activating system during sleep
 c- activation of reticular activating system during wakefulness
 d- activation of cerebral cortex during wakefulness

4) The reticular activating system is stimulated by all the following, except :-
 a- epinephrine
 b- serotonin
 c- acetylcholine
 d- norepinephrine
Section 13

Basal Ganglia

1) Basal ganglia include all the following, except :-
 a- caudate nucleus
 b- dentate nucleus
 c- subthalamic nucleus
 d- substantia nigra reticulate

2) Chemical transmitters in basal ganglia include all the following, except :-
 a- GABA
 b- Dopamine
 c- Glutamate
 d- Glycine

3) Functions of basal ganglia include all the following, except :-
 a- planning and programming of voluntary movements
 b- initiation of reflex movement.
 c- postural regulation
 d- executing learned pattern of movement.

4) Basal ganglia send direct projections to :-
 a- primary motor area
 b- premotor area
 c- VA and VL thalamic nuclei
 d- lower motor neurons in spinal cord

5) Parkinson’s disease results from damage of :-
 a- caudate nucleus
 b- subthalamic nucleus
 c- globus pallidus
 d- substantia nigra

6) Manifestations of Parkinsonism include all the following except :-
 a- kinetic tremors
 b- rigidity
 c- bradykinesia
 d- disturbance of speech
Section 14
Cerebellum

1) Coordination of complex movements by the cerebellum involves all the following mechanisms, except:
 a- sequencing of movements
 b- decomposition of movements
 c- damping of movements
 d- timing of movements

2) The cerebellum controls performance of rapid movements by:
 a- directly stimulating AHCs of the acting muscles
 b- by storing pre-planed motor programs for these movements
 c- by rapidly receiving proprioceptive information from the acting muscles
 d- by inhibiting antagonistic muscles

3) Cerebellar ataxia is manifested by all the following, except:
 a- dysdiadochokinesia
 b- static tremors
 c- dysmetria
 d- staccato speech
Section 15

Hypothalamus and Limbic System

1) The hypothalamus protects the body against hypoglycemia by :-
 a- inhibiting insulin release
 b- increasing glucagon release
 c- increasing thyroxin release
 d- increasing epinephrine release

2) The hypothalamic nucleus that act as a biological clock of the body is :-
 a- supraoptic nucleus
 b- preoptic nucleus
 c- arcuate nucleus
 d- suprachiasmatic nucleus

3) The role of the limbic system in control of emotional behavior involves all
 the following, except :-
 a- homeostasis
 b- somatic motor responses
 c- consolidation of memory
 d- generalized sympathetic stimulation
Section 16

Cerebral Cortex

1) \(\beta \) – waves of the EEG:
 a- are observed during relaxed wakeful state
 b- are faster than \(\alpha \) – waves but slower than theta waves
 c- disappear when the person becomes alert
 d- are observed during REM sleep

2) SW – sleep is characterized by:
 a- predominance of the slow \(\alpha \) – waves in EEG
 b- occurrence of dreams
 c- irregularity of heart rate and respiratory rate
 d- being a deep type of sleep

3) The prefrontal area is concerned with all the following, except:
 a- adjusting behavior
 b- motor guidance within the surrounding environment
 c- planning timing of movements
 d- recall of memories

4) Damage of the general interpretative area causes all the following effects, except:
 a- failure of articulate speech
 b- failure to understand written words
 c- failure to understand spoken words
 d- sensory aphasia

5) Lesions of the speech center in frontal lobe results in:
 a- paralysis of speech muscles
 b- inability to select appropriate words for use in speech
 c- inability to understand spoken language
 d- failure of coordination of speech muscles

6) Retrograde amnesia indicates:
 a- inability to consolidate memories
 b- Inability to recall memories
 c- Failure of working memory
 d- Presence of lesions in the hippocampus
Answers Key

<table>
<thead>
<tr>
<th>Section 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - c</td>
<td>2 - a</td>
<td>3 - b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - d</td>
<td>2 - a</td>
<td>3 - b</td>
<td>4 - c</td>
<td>5 - d</td>
<td></td>
</tr>
<tr>
<td>6 - d</td>
<td>7 - d</td>
<td>8 - c</td>
<td>9 - d</td>
<td>10 - d</td>
<td></td>
</tr>
<tr>
<td>11 - b</td>
<td>12 - b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - c</td>
<td>2 - c</td>
<td>3 - d</td>
<td>4 - b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - d</td>
<td>2 - c</td>
<td>3 - a</td>
<td>4 - a</td>
<td>5 - b</td>
<td></td>
</tr>
<tr>
<td>6 - c</td>
<td>7 - b</td>
<td>8 - c</td>
<td>9 - a</td>
<td>10 - c</td>
<td></td>
</tr>
<tr>
<td>11 - a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - a</td>
<td>2 - d</td>
<td>3 - a</td>
<td>4 - b</td>
<td>5 - c</td>
<td></td>
</tr>
<tr>
<td>6 - b</td>
<td>7 - b</td>
<td>8 - c</td>
<td>9 - c</td>
<td>10 - b</td>
<td></td>
</tr>
<tr>
<td>11 - d</td>
<td>12 - d</td>
<td>13 - a</td>
<td>14 - d</td>
<td>15 - c</td>
<td></td>
</tr>
<tr>
<td>16 - b</td>
<td>17 - b</td>
<td>18 - a</td>
<td>19 - d</td>
<td>20 - d</td>
<td></td>
</tr>
<tr>
<td>21 - a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 6</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - c</td>
<td>2 - a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 7</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - c</td>
<td>2 - b</td>
<td>3 - b</td>
<td>4 - a</td>
<td>5 - c</td>
<td></td>
</tr>
<tr>
<td>6 - d</td>
<td>7 - d</td>
<td>8 - a</td>
<td>9 - c</td>
<td>10 - d</td>
<td></td>
</tr>
<tr>
<td>11 - a</td>
<td>12 - a</td>
<td>13 - d</td>
<td>14 - b</td>
<td>15 - c</td>
<td></td>
</tr>
<tr>
<td>16 - b</td>
<td>17 - b</td>
<td>18 - d</td>
<td>19 - b</td>
<td>20 - b</td>
<td></td>
</tr>
<tr>
<td>21 - c</td>
<td>22 - b</td>
<td>23 - a</td>
<td>24 - d</td>
<td>25 - c</td>
<td></td>
</tr>
<tr>
<td>26 - d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 8</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - b</td>
<td>2 - d</td>
<td>3 - c</td>
<td>4 - c</td>
<td>5 - a</td>
<td></td>
</tr>
<tr>
<td>6 - d</td>
<td>7 - c</td>
<td>8 - d</td>
<td>9 - c</td>
<td>10 - c</td>
<td></td>
</tr>
<tr>
<td>11 - d</td>
<td>12 - d</td>
<td>13 - a</td>
<td>14 - c</td>
<td>15 - c</td>
<td></td>
</tr>
<tr>
<td>16 - c</td>
<td>17 - c</td>
<td>18 - d</td>
<td>19 - a</td>
<td>20 - b</td>
<td></td>
</tr>
<tr>
<td>21 - a</td>
<td>22 - d</td>
<td>23 - c</td>
<td>24 - b</td>
<td>25 - b</td>
<td></td>
</tr>
<tr>
<td>26 - a</td>
<td>27 - c</td>
<td>28 - d</td>
<td>29 - d</td>
<td>30 - d</td>
<td></td>
</tr>
<tr>
<td>31 - b</td>
<td>32 - c</td>
<td>33 - c</td>
<td>34 - c</td>
<td>35 - c</td>
<td></td>
</tr>
</tbody>
</table>

40
<table>
<thead>
<tr>
<th>36 - d</th>
<th>37 - c</th>
<th>38 - c</th>
<th>39 - c</th>
<th>40 - d</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 - d</td>
<td>42 - c</td>
<td>43 - c</td>
<td>44 - b</td>
<td>45 - c</td>
</tr>
<tr>
<td>46 - b</td>
<td>47 - a</td>
<td>48 - c</td>
<td>49 - b</td>
<td>50 - a</td>
</tr>
<tr>
<td>51 - a</td>
<td>52 - d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 9

<table>
<thead>
<tr>
<th>1 - b</th>
<th>2 - b</th>
<th>3 - c</th>
<th>4 - a</th>
<th>5 - b</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - d</td>
<td>7 - b</td>
<td>8 - c</td>
<td>9 - b</td>
<td>10 - d</td>
</tr>
<tr>
<td>11 - c</td>
<td>12 - c</td>
<td>13 - a</td>
<td>14 - c</td>
<td>15 - b</td>
</tr>
</tbody>
</table>

Section 10

<table>
<thead>
<tr>
<th>1 - a</th>
<th>2 - b</th>
<th>3 - c</th>
<th>4 - c</th>
<th>5 - b</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - d</td>
<td>7 - b</td>
<td>8 - c</td>
<td>9 - c</td>
<td>10 - c</td>
</tr>
<tr>
<td>11 - c</td>
<td>12 - d</td>
<td>13 - d</td>
<td>14 - c</td>
<td>15 - b</td>
</tr>
<tr>
<td>16 - c</td>
<td>17 - d</td>
<td>18 - d</td>
<td>19 - c</td>
<td>20 - b</td>
</tr>
<tr>
<td>21 - d</td>
<td>22 - a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 11

<table>
<thead>
<tr>
<th>1 - c</th>
<th>2 - b</th>
<th>3 - d</th>
<th>4 - d</th>
<th>5 - c</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - c</td>
<td>7 - d</td>
<td>8 - a</td>
<td>9 - d</td>
<td>10 - d</td>
</tr>
</tbody>
</table>

Section 12

<table>
<thead>
<tr>
<th>1 - a</th>
<th>2 - d</th>
<th>3 - d</th>
<th>4 - b</th>
<th></th>
</tr>
</thead>
</table>

Section 13

<table>
<thead>
<tr>
<th>1 - b</th>
<th>2 - d</th>
<th>3 - b</th>
<th>4 - c</th>
<th>5 - d</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 14

<table>
<thead>
<tr>
<th>1 - b</th>
<th>2 - b</th>
<th>3 - b</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Section 15

<table>
<thead>
<tr>
<th>1 - d</th>
<th>2 - d</th>
<th>3 - c</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Section 16

<table>
<thead>
<tr>
<th>1 - d</th>
<th>2 - d</th>
<th>3 - c</th>
<th>4 - a</th>
<th>5 - d</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>